941 resultados para Refractory metals
Resumo:
The behaviour of gaseous chlorine and alkali metals of three sorts of biomass (Danish straw, Swedish wood, and sewage sludge) in combustion or gasification is investigated by the chemical equilibrium calculating tool. The ranges of temperature, air-to-fuel ratio, and pressure are varied widely in the calculations (T=400-1800 K, gimel=0-1.8, and P=0.1-2.0 MPa). Results show that the air excess coefficient only has less significant influence on the release of gaseous chlorine and potassium or sodium during combustion. However, in biomass gasification, the influence of the air excess coefficient is very significant. Increasing air excess coefficient enhances the release of HCl(g), KOH(g), or NaOH(g) as well as it reduces the formation of KCl(g), NaCl(g), K(g), or Na(g). In biomass combustion or straw and sludge gasification, increasing pressure enhances the release of HCl(g) and reduces the amount of KCI(g), NaCl(g), KCI(g), or NaOH(g) at high temperatures. However, during wood gasification, the pressure enhances the formation of KOH(g) and KCI(g) and reduces the release of K(g) and HCl(g) at high temperatures. During wood and sewage sludge pyrolysis, nitrogen addition enhances the formation of KCN(g) and NaCN(g) and reduces the release of K(g) and Na(g). Kaolin addition in straw combustion may enhance the formation of potassium aluminosilicate in ash and significantly reduces the release of KCl(g) and KOH(g) and increases the formation of HCl(g).
Resumo:
The deformation of alkali metals K, Rb, and Cs under epitaxial deformation is studied via the ab initio pseudopotential plane wave method using the local-density approximation. Under loading from the stable fee phase, metastable stares along directions [001], [111], and [201] are identified. One metastable state, presented at direction [201], has a very low symmetry in contrast to the planes [001] and [201]. Our results show that the softening direction and sequences of growth is significantly affected by the existence of the metastable states and magnitude of the energy barrier. The resulting softening sequences from soft to hard are [201], [110], [001], and [111] under biaxial compression and [001], [111], [201], and [110] under biaxial tension. An orthorhombic deformation path is used to investigate the fact, that the structure of the alkali films K and Cs evolve from the quasihexagonal structure into the (110)-oriented bcc structure, observed by experiments.
Resumo:
表面技术能够显著提高材料功能而成为工程和产品设计的重要组成部分, 但前提是表面技术必须具有可设计性。为此, 需要开拓和发展表面组合加工技术, 进行创新。该技术的内涵体现了新材料与新技术、基础研究与产业化有机结合的特点, 具有重要的价值和广阔的前景。
Resumo:
Data on the occurrence of solidification cracking in low alloy steel welds have been analysed using a classification neural network based on a Bayesian framework. It has thereby been possible to express quantitatively the effect of variables such as the chemical composition, welding conditions, and weld geometry, on the tendency for solidification cracking during solidification. The ability of the network to express the relationship in a suitably non-linear form is shown to be vital in reproducing known experimental phenomena. © 1996 The Institute of Materials.
Resumo:
Deformation twins have been observed in nanocrystalline (nc) fcc metals with medium-to-high stacking fault energies such as aluminum, copper, and nickel. These metals in their coarse-grained states rarely deform by twining at room temperature and low strain rates. Several twinning mechanisms have been reported that are unique to nc metals. This paper reviews experimental evidences on deformation twinning and partial dislocation. emissions from grain boundaries, twinning mechanisms, and twins with zero-macro-strain. Factors that affect the twinning propensity and recent analytical models on the critical grain sizes for twinning are also discussed. The current issues on deformation twinning in nanocrystalline metals are listed.
Resumo:
Macroscopic strain was hitherto considered a necessary corollary of deformation twinning in coarse-grained metals. Recently, twinning has been found to be a preeminent deformation mechanism in nanocrystalline face-centered-cubic (fcc) metals with medium-to-high stacking fault energies. Here we report a surprising discovery that the vast majority of deformation twins in nanocrystalline Al, Ni, and Cu, contrary to popular belief, yield zero net macroscopic strain. We propose a new twinning mechanism, random activation of partials, to explain this unusual phenomenon. The random activation of partials mechanism appears to be the most plausible mechanism and may be unique to nanocrystalline fcc metals with implications for their deformation behavior and mechanical properties.
Resumo:
Predictions based on an anisotropic elastic-plastic constitutive model proposed in the first part of this paper are compared with the experimental stress and strain data on OHFC copper under first torsion to about 13% and partial unloading, and then tension-torsion to about 10% along eight different loading paths. This paper also describes the deformation and stress of the thin-walled tubular specimen under finite deformation, the numerical implementation of the model, and the detailed procedure for determining the material parameters in the model. Finally, the model is extended to a general representation of the multiple directors, and the elastic-viscoplastic extension of the constitutive model is considered.
Resumo:
In this paper, the closed form of solution to the stochastic differential equation for a fatigue crack evolution system is derived. and the relationship between metal fatigue damage and crack stochastic behaviour is investigated. It is found that the damage extent of metals is independent of crack stochastic behaviour ii the stochastic deviation of the crack growth rate is directly proportional to its mean value. The evolution of stochastic deviation of metal fatigue damage in the stage close to the transition point between short and long crack regimes is also discussed.
Resumo:
An anisotropic elastic-plastic constitutive model for single and polycrystalline metals is proposed. The anisotropic hardening of single crystals, at first, is discussed with the viewpoint of yield surface and a new formulation of it is proposed. Then, a model for the anisotropic hardening of polycrystals is suggested by increasing the number of slip systems and incorporating the interaction of all slip systems. The interaction of grains through grain boundaries is shown to be similar to, and incorporated into, the interaction of slip systems in grains. The numerical predictions and their comparisons with experiments will follow in Part II of this paper.
Resumo:
The relative Kic values of metals are calculated with a simplified dislocation model. It is found that the ratio of KIIc to KIc and the temperature dependence of fracture toughness of some metals estimated with this model are consistent with the experimental results.