899 resultados para Recycled Concrete Aggregate


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report presents the results of a comparative laboratory study between well- and gap-graded aggregates used in asphalt concrete paving mixtures. A total of 424 batches of asphalt concrete mixtures and 3,960 Marshall and Hveem specimens were examined. There is strong evidence from this investigation that, with proper combinations of aggregates and asphalts, both continuous- and gap-graded aggregates can produce mixtures of high density and of qualities meeting current design criteria. There is also reason to believe that the unqualified acceptance of some supposedly desirable, constant, mathematical relationship between adjacent particle sizes of the form such as Fuller's curve p = 100 (d/D)n is not justified. It is recommended that. the aggregate grading limits be relaxed or eliminated and that the acceptance or rejection of an aggregate for use in asphalt pavement be based on individual mixture evaluation. Furthermore, because of the potential attractiveness of gap-graded asphalt concrete in cost, quality, and skid and wear resistance, selected gap-graded mixtures are recommended for further tests both in the laboratory and in the field, especially in regard to ease of compaction and skid and wear resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iowa DOT has been using the "Iowa Method" thin bonded low-slump dense Portland Cement Concrete (PCC) bridge deck overlay for rehabilitation of delaminated decks since 1963. In time, continued use of studded tires will wear away the transverse grooved texture. The objective of this research was to evaluate the benefit of incorporating a hard durable aggregate into a dense PCC overlay to provide frictional property longevity. The project included three overlays on I-35 near Ankeny. The texture and friction properties of two overlays, one constructed with crushed granite and the other with crushed quartzite coarse aggregate, were compared to an overlay constructed with locally available crushed limestone. There were no construction problems resulting from the use of crushed granite or quartzite. There was no significant frictional property benefit from the crushed granite or crushed quartzite through six years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major objective of this research project was to use thermal analysis techniques in conjunction with x-ray analysis methods to identify and explain chemical reactions that promote aggregate related deterioration in portland cement concrete. Twenty-two different carbonate aggregate samples were subjected to a chemical testing scheme that included: • bulk chemistry (major, minor and selected trace elements) • bulk mineralogy (minor phases concentrated by acid extraction) • solid-solution in the major carbonate phases • crystallite size determinations for the major carbonate phases • a salt treatment study to evaluate the impact of deicer salts Test results from these different studies were then compared to information that had been obtained using thermogravimetric analysis techniques. Since many of the limestones and dolomites that were used in the study had extensive field service records it was possible to correlate many of the variables with service life. The results of this study have indicated that thermogravimetric analysis can play an important role in categorizing carbonate aggregates. In fact, with modern automated thermal analysis systems it should be possible to utilize such methods on a quality control basis. Strong correlations were found between several of the variables that were monitored in this study. In fact, several of the variables exhibited significant correlations to concrete service life. When the full data set was utilized (n = 18), the significant correlations to service life can be summarized as follows ( a = 5% level): • Correlation coefficient, r, = -0.73 for premature TG loss versus service life. • Correlation coefficient, r, = 0.74 for relative crystallite size versus service life. • Correlation coefficient, r, = 0.53 for ASTM C666 durability factor versus service life. • Correlation coefficient, r, = -0.52 for acid-insoluble residue versus service life. Separation of the carbonate aggregates into their mineralogical categories (i.e., calcites and dolomites) tended to increase the correlation coefficients for some specific variables (r sometimes approached 0.90); however, the reliability of such correlations was questionable because of the small number of samples that were present in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major highway concrete pavements in Iowa have exhibited premature deterioration attributed to effects of ettringite formation, alkali-silica expansive reactions, and to frost attack, or some combination of them. These pavements were constructed in the mid- 1980s as non-reinforced, dual-lane, roads ranging in thickness between 200 mm and 300 mm, with skewed joints reinforced with dowels. Deterioration was initially recognized with a darkening of joint regions, which occurred for some pavements as soon as four years after construction. Pavement condition ranges from severe damage to none, and there appeared to be no unequivocal materials or processing variables correlated with failure. Based upon visual examinations, petrographic evaluation, and application of materials models, the deterioration of concrete highway pavements in Iowa appear related to a freeze-thaw failure of the coarse aggregate and the mortar. Crack patterns sub-parallel to the concrete surface transecting the mortar fraction and the coarse aggregate are indicative of freeze-thaw damage of both the mortar and aggregate. The entrained air void system was marginal to substandard, and filling of some of the finer-sized voids by ettringite appears to have further degraded the air void system. The formation of secondary ettringite within the entrained air voids probably reflects a relatively high degree of concrete saturation causing the smaller voids to be filled with pore solution when the concrete freezes. Alkali-silica reaction (ASR) affects some quartz and shale in the fine aggregate, but is not considered to be a significant cause of the deterioration. Delayed ettringite formation was not deemed likely as no evidence of a uniform paste expansion was observed. The lack of field-observed expansion is also evidence against the ASR and DEF modes of deterioration. The utilization of fly ash does not appear to have affected the deterioration as all pavements with or without fly ash exhibiting substantial damage also exhibit significant filling of the entrained air void system, and specimens containing fly ash from sound pavements do not have significant filling. The influence of the mixture design, mixing, and placing must be evaluated with respect to development of an adequate entrained air void system, concrete homogeneity, longterm drying shrinkage, and microcracking. A high-sand mix may have contributed to the difficult mixture characteristics noted upon placement and exacerbate concrete heterogeneity problems, difficulty in developing an adequate entrained air void system, poor consolidation potential, and increased drying shrinkage and cracking. Finally, the availability of moisture must also be considered, as the secondary precipitation of ettringite in entrained air voids indicates they were at least partially filled with pore solution at times. Water availability at the base of the slabs, in joints, and cracks may have provided a means for absorbing water to a point of critical saturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seven asphaltic concrete resurfacing projects were tested for their frictional properties to determine the age-friction relationship of new paving. Projects studied included Type A asphaltic concrete which is generally used for higher traffic volume roads and Type B asphaltic concrete, a lower type material. Also included in the study were asphaltic concretes containing Type 3 and Type 4 coarse aggregate texture classifications. The classifications are based upon material type and grain size composition. Surfaces both with and without sprinkle treatment aggregates were also included. The data gathered suggests that properly designed and placed dense graded asphaltic concrete mixes are adequate to serve the traveling public at all ages tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples of both recycled and nonrecycled asphaltic concrete were extracted in increments by the Abson Recovery Method and the penetration of the asphalt from each increment determined. The recycled projects were plantsite operations containing various amounts of virgin gravel. Cored samples were taken from the pavements on Kossuth County roads that were constructed as recycled projects in 1975, 1976, and 1977. Cored samples were also taken from a Kossuth County paving project done in 1975, that was not recycled. Comparison mix samples from 1978 construction projects in Marshall and Woodbury Counties of non - recycled projects are included. The test data from the penetrations of the recovered asphalt indicates that mixing of the old and new asphalt occurs very extensively in the hot recycling process. In laboratory controlled conditions it is difficult to coat aggregates with different penetration asphalts and prevent them from mixing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this investigation was to obtain information relative to the alkali-silica reaction in Iowa aggregates. Of particular concern were those aggregates in southwestern Iowa thought to be potentially alkali reactive. Further, should those aggregates have proven to be alkali-reactive, at what cement alkali content could these aggregates be considered to be deleteriously reactive? If the aggregates were proven to be reactive, what types of effects might show up in a structure in which an alkali-silica reaction has occurred? Also, what environmental conditions would cause the reaction? Finally, based on the information obtained from the investigation, would it be possible to raise the cement alkali content specifications? Would the Iowa DOT eliminate the alkali content limits altogether except for cement used with reactive aggregate in the same manner as AASHTO or ASTM? Also, would there be any other side effects that might occur as the result of using high alkali-cement?

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three comparable hot mixed asphalt paving mixes were produced using two different aggregates produced from reclaimed portland cement concrete paving and one from a crushed limestone aggregate. These were subjected both dry and soaked to indirect tensile tests to determine the wet strength retention. One mix made from reclaimed concrete demonstrated a slightly better strength retention than the limestone mix and the other less. Satisfactory asphalt paving mixes can be produced from reclaimed concrete pavements but the increased asphalt demand (about 1%) negates part of the potential savings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Portland cement concrete is an outstanding structural material but stresses and cracks often occur in large structures due to drying shrinkage. The objective of this research was to determine the change in length due to loss of moisture from placement through complete drying of portland cement concrete. The drying shrinkage was determined for four different combinations of Iowa DOT structural concrete mix proportions and materials. The two mix proportions used were an Iowa DOT D57 (bridge deck mix proportions) and a water reduced modified C4 mix. Three 4"x 4"x 18" beams were made for each mix. After moist curing for three days, all beams were maintained in laboratory dry air and the length and weight were measured at 73°F ± 3°F. The temperature was cycled on alternate days from 73°F to 90°F through four months. From four months through six months, the temperature was cycled one day at 73°F and six days at 130°F. It took approximately six months for the concrete to reach a dry condition with these temperatures. The total drying shrinkage for the four mixes varied from .0106 in. to .0133 in. with an average of .0120 in. The rate of shrinkage was approximately .014% shrinkage per 1% moisture loss for all four mixes. The rate and total shrinkage for all four mixes was very similar and did not seem to depend on the type of coarse aggregate or the use of a retarder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the 1980s, the Iowa Department of Transportation has increased its use of recycled Portland Cement Concrete (PCC) as drainable base material below some new pavements. Water flowing out of the longitudinal drains on projects having recycled PCC drainable bases was found to have a high pH value. The high pH water impedes vegetation growth and becomes a contributing factor to soil erosion at the drain outlet. In addition, the high pH water contributes to the growth of crystalline deposits on the drain outlet wire mesh rodent guard and in some cases caused it to become completely blocked. This research determined which of three choices of recycled PCC drainable base material, gradation, and design would give the lowest pH value in the drain discharge water. The drainable base material having its fines separated out and placed as a 2-in. (5.1-mm) bottom layer, below the remaining coarse material, generally gave pH values around 11.2 while other designs tested gave pH values around 11.5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold in-place recycling (CIR) has become an attractive method for rehabilitating asphalt roads that have good subgrade support and are suffering distress related to non-structural aging and cracking of the pavement layer. Although CIR is widely used, its use could be expanded if its performance were more predictable. Transportation officials have observed roads that were recycled under similar circumstances perform very differently for no clear reason. Moreover, a rational mix design has not yet been developed, design assumptions regarding the structural support of the CIR layer remain empirical and conservative, and there is no clear understanding of the cause-effect relationships between the choices made during the design/construction process and the resulting performance. The objective of this project is to investigate these relationships, especially concerning the age of the recycled pavement, cumulative traffic volume, support conditions, aged engineering properties of the CIR materials, and road performance. Twenty-four CIR asphalt roads constructed in Iowa from 1986 to 2004 were studied: 18 were selected from a sample of roads studied in a previous research project (HR-392), and 6 were selected from newer CIR projects constructed after 1999. This report describes the results of comprehensive field and laboratory testing for these CIR asphalt roads. The results indicate that the modulus of the CIR layer and the air voids of the CIR asphalt binder were the most important factors affecting CIR pavement performance for high-traffic roads. For low-traffic roads, the wet indirect tensile strength significantly affected pavement performance. The results of this research can help identify changes that should be made with regard to design, material selection, and construction in order to improve the performance and cost-effectiveness of future recycled roads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-stage mixing process for concrete involves mixing a slurry of cementitious materials and water, then adding the slurry to coarse and fine aggregate to form concrete. Some research has indicated that this process might facilitate dispersion of cementitious materials and improve cement hydration, the characteristics of the interfacial transition zone (ITZ) between aggregate and paste, and concrete homogeneity. The goal of the study was to find optimal mixing procedures for production of a homogeneous and workable mixture and quality concrete using a two-stage mixing operation. The specific objectives of the study are as follows: (1) To achieve optimal mixing energy and time for a homogeneous cementitious material, (2) To characterize the homogeneity and flow property of the pastes, (3) To investigate effective methods for coating aggregate particles with cement slurry, (4) To study the effect of the two-stage mixing procedure on concrete properties, (5) To obtain the improved production rates. Parameters measured for Phase I included: heat of hydration, maturity, and rheology tests were performed on the fresh paste samples, and compressive strength, degree of hydration, and scanning electron microscope (SEM) imaging tests were conducted on the cured specimens. For Phases II and III tests included slump and air content on fresh concrete and compressive and tensile strengths, rapid air void analysis, and rapid chloride permeability on hardened concrete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this research is to examine the effects that different methods of RAP stockpile fractionation would have on the volumetric mix design properties for high-RAP content surface mixes, with the goal of meeting all specified criteria for standard HMA mix designs. To determine the distribution of fine aggregates and binder in RAP stockpile, RAP materials were divided by each sieve size. The composition of RAP materials retained on each sieve was analyzed to determine the optimum fractionation method. Fractionation methods were designed to separate the stockpile at a specified sieve size to control the amount of fine RAP materials which contain higher amounts of fine aggregates and dust contents. These fine RAP materials were used in reduced proportions or completely eliminated, thereby decreasing the amount of fine aggregate materials introduced to the mix. Mix designs were performed using RAP materials from four different stockpiles and the two fractionated methods were used with high-RAP contents up to 50% by virgin binder replacement. By using a fractionation method, a mix with up to 50% RAP was successfully designed while meeting all Superpave criteria and asphalt film thickness requirement by controlling the dust content from RAP stockpiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Portland cement pervious concrete (PCPC) is being used more frequently due to its benefits in reducing the quantity of runoff water,improving water quality, enhancing pavement skid resistance during storm events by rapid drainage of water, and reducing pavement noise. In the United States, PCPC typically has high porosity and low strength, which has resulted in the limited use of pervious concrete, especially in hard wet freeze environments (e.g., the Midwestern and Northeastern United States and other parts of the world).Improving the strength and freeze-thaw durability of pervious concrete will allow an increase in its use in these regions. The objective of this research is to develop a PCPC mix that not only has sufficient porosity for stormwater infiltration, but also desirable strength and freeze-thaw durability. In this research, concrete mixes were designed with various sizes and types of aggregates, binder contents, and admixture amounts. The engineering properties of the aggregates were evaluated. Additionally, the porosity, permeability, strength, and freeze-thaw durability of each of these mixes was measured. Results indicate that PCPC made with single-sized aggregate has high permeability but not adequate strength. Adding a small percent of sand to the mix improves its strength and freeze-thaw resistance, but lowers its permeability. Although adding sand and latex improved the strength of the mix when compared with single-sized mixes, the strength of mixes where only sand was added were higher. The freeze-thaw resistance of PCPC mixes with a small percentage of sand also showed 2% mass loss after 300 cycles of freeze-thaw. The preliminary results of the effects of compaction energy on PCPC properties show that compaction energy significantly affects the freeze-thaw durability of PCPC and, to a lesser extent, reduces compressive strength and split strength and increases permeability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incinerarion (MSWI) bottom ash (BA) and air pollution control (APC) ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behaviour and the economy of the process was considered. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured.