943 resultados para Record conversion
Resumo:
Phytophthora capsici has been identified from two new hosts in Queensland, Custard Apple (Annona squamosa) and Mandevilla sp. This is the first record of P. capsici in Queensland and only the second record of the pathogen. in Australia. It is also the first report of the pathogen on these hosts.
Resumo:
Catalytic conversion of N2O to N-2 over Cu- and Co-impregnated activated carbon catalysts (Cu/AC and Co/AC) was investigated. Catalytic activity measurements were carried out in a fixed-bed flow reactor at atmospheric pressure. The catalysts were characterized by N-2 adsorption, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). This study aimed to provide insights into the following aspects: the metal dispersion, changes in pore structure, influence of catalyst loading on reaction, and reaction mechanism. Increasing loading of Co or Cu led to decreasing dispersion, but 20 wt % loading was an upper limit for optimal activities in both cases, with too high loading causing sintering of metal. Co exhibited a relatively better dispersion than Cu. Impregnation of metal led to a large decrease in surface area and pore volume, especially for 30 wt % of loading. 20 wt % of loading has proved to be the optimum for both Cu and Co, which shows the highest activity. Both N2O-Co/AC and -Cu/AC reactions are based upon a redox mechanism, but the former is limited by the oxygen transfer from catalysts to carbon, while N2O chemisorption on the surface of Cu catalyst controls the latter. The removal of oxygen from cobalt promotes the activity of Co/AC, but it is beneficial for Cu/AC to keep plenty of oxygen to maintain the intermediate oxidation of copper-Cu1+. The different nature of the two catalysts and their catalytic reaction mechanisms are closely related to their different electronegativities.
Resumo:
Catalytic conversion of N2O to N-2 With potassium catalysts supported on activated carbon (K/AC) was investigated. Potassium proves to be much more active and stable than either copper or cobalt because potassium possesses strong abilities both for N2O chemisorption and oxygen transfer. Potassium redispersion is found to play a critical role in influencing the catalyst stability. A detailed study of the reaction mechanism was conducted based upon three different catalyst loadings. It was found that during temperature-programmed reaction (TPR), the negative oxygen balance at low temperatures (< 50 degrees C) is due to the oxidation of the external surface of potassium oxide particles, while the bulk oxidation accounts for the oxygen accumulation at higher temperatures (below ca. 270 degrees C). N2O is beneficial for the removal of carbon-oxygen complexes because of the formation of CO2 instead of CO and because of its role in making the chemisorption of produced CO2 on potassium oxide particles less stable. A conceptual three-zone model was proposed to clarify the reaction mechanism over K/AC catalysts. CO2 chemisorption at 250 degrees C proves to be an effective measurement of potassium dispersion. (C) 1999 Academic Press.
Resumo:
The effect of acidic treatments on N2O reduction over Ni catalysts supported on activated carbon was systematically studied. The catalysts were characterized by N-2 adsorption, mass titration, temperature-programmed desorption (TPD), and X-ray photoelectron spectrometry (XPS). It is found that surface chemistry plays an important role in N2O-carbon reaction catalyzed by Ni catalyst. HNO3 treatment produces more active acidic surface groups such as carboxyl and lactone, resulting in a more uniform catalyst dispersion and higher catalytic activity. However, HCl treatment decreases active acidic groups and increases the inactive groups, playing an opposite role in the catalyst dispersion and catalytic activity. A thorough discussion of the mechanism of the N2O catalytic reduction is made based upon results from isothermal reactions, temperature-programmed reactions (TPR) and characterization of catalysts. The effect of acidic treatment on pore structure is also discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Myriogenospora atramentosa has been found on lemongrass (Cymbopogon citratus) and sugarcane (Saccharum interspecific hybrids) in Queensland. These are the first records of this fungus outside of the Americas.
Resumo:
A detailed pollen record from the Ocean Drilling Program Site 820 core, located on the upper part of the continental slope off the coast of northeast Queensland, was constructed to compare with the existing pollen record from Lynch's Crater on the adjacent Atherton Tableland and allow the production of a regional picture of vegetation and environmental change through the last glacial cycle. Some broad similarities in patterns of vegetation change are revealed, despite the differences between sites and their pollen catchments, which can be related largely to global climate and sea-level changes. The original estimated time scale of the Lynch's Crater record is largely confirmed from comparison with the more thoroughly dated ODP record. Conversely, the Lynch's Crater pollen record has assisted in dating problematic parts of the ODP record. In contrast to Lynch's Crater, which reveals a sharp and sustained reduction in drier araucarian forest around 38,000 yrs BP, considered to have been the result of burning by Aboriginal people, the ODP record indicates, most likely, a stepwise reduction, dating from 140,000 yrs BP or beyond. The earliest reduction shows lack of a clear connection between Araucaria decline and increased burning and suggests that people may not have been involved at this stage. However, a further decline in araucarian forest, possibly around 45,000 yrs BP, which has a more substantial environmental impact and is not related to a time of major climate change, is likely, at least partially, the result of human burning. The suggestion, from the ODP core oxygen isotope record, of a regional sea-surface temperature increase of around 4 degrees C between about 400,000 and 250,000 yrs BP, may have had some influence on the overall decline in Araucaria and its replacement by sclerophyll vegetation. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A new Sciophilinae-Azana atlantica, sp. n. - is described from the Atlantic Forest in southeastern Brazil. The species has a number of distinctive apomorphic features, including loss of the mid ocellus, reduced mouthparts, Sc short and incomplete, first section of Rs missing, r-m elongated, longitudinal in position, aligned with the second section of Rs ( R(5)), unforked medial and cubital veins, R(4) missing, M(4) entirely absent, gonostyle triangular, with an inner row of elongated spines and a basal, digitiform inner projection. Some of these features are shared with other genera of the Azana-group of Sciophilinae. The shape of the scutum and the strong spines on the gonostyle make it clear that the species belongs in Azana, despite the features that are distinctive from the remaining species in the genus. There are ten species described in Azana to date, from United States, Europe, Sri Lanka, Canary Islands, tropical Africa and Baltic amber. This is the first Neotropical species belonging to the genus. The complete loss of M(4) and the separated gonocoxites suggest that Azana atlantica, sp. n. forms a monophyletic group with the Afrotropical species of the genus. Azana, Morganiella, Neoaphelomera, Neotrizygia, and Trizygia are shown to compose a small clade within the Azana-group of genera. The division of the genus into two subgenera - A. ( Azana) and A. ( Jugazana) - most probably renders A. ( Azana) paraphyletic and it is suggested that this should be for the time being abandoned.
Resumo:
(Triphora uniflora A.C. Ferreira, Baptista & Pansarin (Orchidaccae: Triphorcae): a new species and the first record of the genus Triphora Nutt. for Sao Paulo state, Brazil). Triphora uniflora A. C. Ferreira, Baptista & Pansarin, a new species of Orchidaceae, is described and illustrated. Furthermore, this is the first report of the genus Triphora for Sao Paulo state, Brazil. The relationship of this new species to other taxa of the genus and the need to preserve the natural habitat of this Triphora species are discussed.
Resumo:
Reports on the use of sirolimus (SRL) in pancreas transplantation are still limited. The aim of this study was to evaluate the outcome of SRL conversion in pancreas transplant patients. Among 247 patients undergoing simultaneous kidney-pancreas or solitary pancreas transplantation, 33 (13%) were converted to SRL. The reasons for conversion were calcineurin inhibitors (CNI) nephrotoxicity (n = 24; 73%), severe neurotoxicity owing to CNI (n = 1; 3%), severe and/or recurrent acute rejection episodes (n = 7; 21.%), gastrointestinal (GI) side effects of mycophenolate mofetil (MMF; n = 5; 15%), and hyperglycemia (n = 4; 12%). Before conversion, all patients were maintained on a CNI, MMF, and low-dose steroids. They were gradually converted to SRL associated with either CNI or MMF withdrawal. Sixty-three percent (n = 15) of patients who were converted owing to CNI nephrotoxicity, showed stable or improved renal function. At 12 months after conversion, serum creatinine levels were significantly decreased in this group (2.2 +/- 0.5 vs 1.6 +/- 0.3 mg/dL; P = .001) and C-peptide values increased (2.9 +/- 1.1.1 vs 3.1 +/- 1.3 nmol/L; P = .01.8). The only patient with leucoencephalopathy showed improved neurologic status after SRL conversion. All patients converted to SRL because of GI side effects of MMF showed improvements, and none of those converted because of hyperglycemia experienced improvement. There were no episodes of acute rejection after conversion. We concluded that conversion to SRL in pancreas transplantation should be considered an important alternative strategy, particularly for CNI nephrotoxicity and neurotoxicity, and in cases of severe diarrhea due to MMF.
Resumo:
The activation of inflammatory cascades has been consistently demonstrated in the pathophysiology of Alzheimer`s disease (AD). Among several putative neuroinflammatory mechanisms, the tumor necrosis factor alpha (TNF-alpha) signaling system has a central role in this process. Recent evidence indicates that the abnormal production of inflammatory factors may accompany the progression from mild cognitive impairment (MCI) to dementia. We aimed to examine serum levels of TNF-alpha and its soluble receptors (sTNFR1 and sTNFR2) in patients with MCI and AD as compared to cognitively unimpaired elderly subjects. We further aimed to investigate whether abnormal levels of these cytokines predict the progression from MCI to AD upon follow-up. We utilized cross-sectional determination of serum levels of TNF-alpha, sTNFR1, and sTNFR2 (ELISA method) in a test group comprising 167 older adults (31 AD, 72 MCI, and 64 healthy controls), and longitudinal reassessment of clinical status after 18.9 +/- 10.0 months. At baseline, there were no statistically significant differences in serum TNF-alpha, sTNFR1, and sTNFR2 between patients with MCI and AD as compared to controls. Nevertheless, patients with MCI who progressed to AD had significantly higher serum sTNFR1 levels as opposed to patients who retained the diagnosis of MCI upon follow-up (p = 0.03). Cox regression analysis showed that high serum sTNFR1 levels predicted the conversion from MCI to AD (p = 0.003), whereas no significant differences were found with respect to serum levels of TNF-alpha and sTNFR2. Abnormal activation of TNF-alpha signaling system, represented by increased expression of sTNFR1, is associated with a higher risk of progression from MCI to AD.
Resumo:
Storage at low temperature is the most frequently used method to extend the shelf life of banana fruit, and is fundamental for extended storage and transport over long distances. However, storage and transport conditions must be carefully controlled because of the high susceptibility of many commercial cultivars to chilling injury. The physiological behavior of bananas at low temperatures has been studied to identify possible mechanisms of resistance to chilling injury. The aim of this work was to evaluate differences in the starch-to-sucrose metabolism of a less tolerant and susceptible (Musa acuminata, AAA cv. Nanicao) and a more tolerant (M. acuminata x Musa balbusiana, AAB, cv. Prata) banana cultivar to chilling injury. Fruits of these cultivars were stored in chambers at 13 degrees C for 15 d, at which point they were transferred to 19 degrees C, where they were left until complete ripening. The low temperature induced significant changes in the metabolism of starch and sucrose in comparison to fruit ripened only at 19 degrees C. The sucrose accumulation was slightly higher in cv. Prata, and different patterns of starch degradation, sucrose synthesis, activity and protein levels of the alpha-and beta-amylases, starch phosphorylase, sucrose synthase and sucrose phosphate synthase were detected between the cultivars. Our results suggest that starch-to-sucrose metabolism is likely part of the mechanism for cold acclimation in banana fruit, and the cultivar-dependent differences contribute to their ability to tolerate cold temperatures. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background. Renal failure is the most important comorbidity in patients with heart transplantation, it is associated with increased mortality. The major cause of renal dysfunction is the toxic effects of calcineurin inhibitors (CNI). Sirolimus, a proliferation signal inhibitor, is an imunossupressant recently introduced in cardiac transplantation. Its nonnephrotoxic properties make it an attractive immunosuppressive agent for patients with renal dysfunction. In this study, we evaluated the improvement in renal function after switching the CNI to sirolimus among patients with new-onset kidney dysfunction after heart transplantation. Methods. The study included orthotopic cardiac transplant (OHT) patients who required discontinuation of CNI due to worsening renal function (creatinine clearance <50 mL/min). We excluded subjects who had another indication for initiation of sirolimus, that is, rejection, malignancy, or allograft vasculopathy. The patients were followed for 6 months. The creatinine clearance (CrCl) was estimated according to the Cockcroft-Gault equation using the baseline weight and the serum creatinine at the time of introduction of sirolimus and 6 months there after. Nine patients were included, 7 (78%) were males and the overall mean age was 60.1 +/- 12.3 years and time since transplantation 8.7 +/- 6.1 years. The allograft was beyond 1 year in all patients. There was a significant improvement in the serum creatinine (2.98 +/- 0.9 to 1.69 +/- 0.5 mg/dL, P = .01) and CrCl (24.9 +/- 6.5 to 45.7 +/- 17.2 mL/min, P = .005) at 6 months follow-up. Conclusion. The replacement of CNI by sirolimus for imunosuppressive therapy for patients with renal failure after OHT was associated with a significant improvement in renal function after 6 months.
Resumo:
Objectives. This study evaluated the effect of composite pre-polymerization temperature and energy density on the marginal adaptation (MA), degree of conversion (DC), flexural strength (FS), and polymer cross-linking (PCL) of a resin composite (Filtek Z350, 3M/ESPE). Methods. For MA, class V cavities (4mmx2mmx2mm) were prepared in 40 bovine incisors. The adhesive system Adper Single Bond 2 (3M/ESPE) was applied. Before being placed in the cavities, the resin composite was either kept at room-temperature (25 degrees C) or previously pre-heated to 68 degrees C in the Calset (TM) device (AdDent Inc., Danbury, CT, USA). The composite was then light polymerized for 20 or 40s at 600mW/cm(2) (12 or 24 J/cm(2), respectively). The percentage of gaps was analyzed by scanning electron microscopy, after sectioning the restorations and preparing epoxy resin replicas. DC (n = 3) was obtained by FT-Raman spectroscopy on irradiated and non-irradiated composite surfaces. FS (n = 10) was measured by the three-point-bending test. KHN (n = 6) was measured after 24h dry storage and again after immersion in 100% ethanol solution for 24 h, to calculate PCL density. Data were analyzed by appropriate statistical analyses. Results. The pre-heated composite showed better MA than the room-temperature groups. A higher number of gaps were observed in the room-temperature groups, irrespective of the energy density, mainly in the axial wall (p < 0.05). Composite pre-heating and energy density did not affect the DC, FS and PCL (p > 0.05). Significance. Pre-heating the composite prior to light polymerization similar in a clinical situation did not alter the mechanical properties and monomer conversion of the composite, but provided enhanced composite adaptation to cavity walls. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. The aim of this study was to evaluate the influence of monomer content on fracture toughness (K(Ic)) before and after ethanol solution storage, flexural properties and degree of conversion (DC) of bisphenol A glycidyl methacrylate (Bis-GMA) co-polymers. Methods. Five formulations were tested, containing Bis-GMA (B) combined with TEGDMA (T), UDMA (U) or Bis-EMA (E), as follows (in mol%): 30B:70T; 30B:35T:35U; 30B:70U; 30B:35T:35E; 30B:70E. Bimodal filler was introduced at 80 wt%. Single-edge notched beams for fracture toughness (FT, 25 mm x 5 mm x 2.5 mm, a/w = 0.5, n = 20) and 10 mm x 2 mm x 1 mm beams for flexural strength (FS) and modulus (FM) determination (10 mm x 2 mm x 1 mm, n = 10) were built and then stored in distilled water for 24 h at 37 degrees C. All FS/FM beams and half of the FT specimens were immediately submitted to three-point bending test. The remaining FT specimens were stored in a 75%ethanol/25%water (v/v) solution for 3 months prior to testing. DC was determined with FT-Raman spectroscopy in fragments of both FT and FS/FM specimens at 24 h. Data were submitted to one-way ANOVA/Tukey test (alpha = 5%). Results. The 30B:70T composite presented the highest K(Ic) value (in MPa m(1/2)) at 24 h (1.3 +/- 0.4), statistically similar to 30B:35T:35U and 30B:70U, while 30B:70E presented the lowest value (0.5 +/- 0.1). After ethanol storage, reductions in K(Ic) ranged from 33 to 72%. The 30B:70E material presented the lowest reduction in FT and 30B:70U, the highest. DC was similar among groups (69-73%), except for 30B:70U (52 +/- 4%, p < 0.001). 30B:70U and 30B:35T:35U presented the highest FS (125 +/- 21 and 122 +/- 14 MPa, respectively), statistically different from 30B:70T or 30B:70E (92 +/- 20 and 94 +/- 16 MPa, respectively). Composites containing UDMA or Bis-EMA associated with Bis-GMA presented similar FM, statistically lower than 30B:35T:35U. Significance. Composites formulated with Bis-GMA:TEGDMA:UDMA presented the best compromise between conversion and mechanical properties. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.