903 resultados para Reactivity. eng
Resumo:
Introduction: The aim of this study was to evaluate the serological cross-reactivity between Leishmania sp. and other canine pathogens. Methods: Positive serum samples for Ehrlichia canis, Babesia canis, Toxoplasma gondii, Neospora caninum and Trypanosoma cruzi were tested using three serological methods enzyme linked immunosorbent assay (ELISA), indirect immunofluorescent antibody test (IFAT) and Kalazar Detect™, for canine visceral leishmaniasis. Results: Of the 57 dog samples tested, 24 (42.1%) tested positive using one of the three serological methods: 10/57 (17.5%) for ELISA, 11/57 (19.3%) for IFAT and 3/57 (5.3%) for Kalazar Detect™. Conclusions: Our results demonstrated that the presence of other infectious agents may lead to cross-reactivity on leishmaniasis serological tests.
Resumo:
The efficiency of sources used for soil acidity correction depends on reactivity rate (RR) and neutralization power (NP), indicated by effective calcium carbonate (ECC). Few studies establish relative efficiency of reactivity (RER) for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves), and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides) was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A very simple method based on electrical conductivity and pH measurements was proposed for assessing reactivity of pozzolans. Calcium hydroxide: pozzolan water suspensions were monitored by means of measurements of electrical conductivity and pH values. In these suspensions, Ca(OH)(2) in solid state was initially present, being them, thus, saturated in this reagent. Three testing temperatures were selected (40, 50 and 60 degrees C). In the experiments carried out, calcium hydroxide was suspended in deionized water for yielding a lime saturated suspension. The addition of siliceous pozzolan (two types of rice husk ash RHA and two types of densified silica fume DSF were tested) to the saturated lime suspension can produce the unsaturation of the system, depending on the testing time, testing temperature and reactivity of pozzolan. When unsaturation was reached, the loss of electrical conductivity was higher than 30% and the variation of pH was higher than 0.15 units. These threshold values were selected for characterizing the reactivity of pozzolans by means of a proposed template, classifying the pozzolan in three different reactivity levels.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives. The purpose of this study was to evaluate the reactivity and polymerization kinetics behavior of a model dental adhesive resin with water-soluble initiator systems. Methods. A monomer blend based on Bis-GMA, TEGDMA and HEMA was used as a model dental adhesive resin, which was polymerized using a thioxanthone type (QTX) as a photoinitiator. Binary and ternary photoinitiator systems were formulated using 1 mol% of each initiator. The co-initiators used in this study were ethyl 4-dimethylaminobenzoate (EDAB), diphenyliodonium hexafluorophosphate (DPIHFP), 1,3-diethyl-2-thiobarbituric acid (BARB), p-toluenesulfinic acid and sodium salt hydrate (SULF). Absorption spectra of the initiators were measured using a UV-Vis spectrophotometer, and the photon absorption energy (PAE) was calculated. The binary system camphorquinone (CQ)/amine was used as a reference group (control). Twelve groups were tested in triplicate. Fourier-transform infrared spectroscopy (FTIR) was used to investigate the polymerization reaction during the photoactivation period to obtain the degree of conversion (DC) and maximum polymerization rate (R-p(max)) profile of the model resin. Results. In the analyzed absorption profiles, the absorption spectrum of QTX is almost entirely localized in the UV region, whereas that of CQ is in the visible range. With respect to binary systems, CQ + EDAB exhibited higher DC and R-p(max) values. In formulations that contained ternary initiator systems, the group CQ + QTX + EDAB was the only one of the investigated experimental groups that exhibited an R-p(max) value greater than that of CQ + EDAB. The groups QTX + EDAB + DPIHFP and QTX + DPIHFP + SULF exhibited values similar to those of CQ + EDAB with respect to the final DC; however, they also exhibited lower reactivity. Significance. Water-soluble initiator systems should be considered as alternatives to the widely used CQ/amine system in dentin adhesive formulations. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
RATIONALE: Oxazolines have attracted the attention of researchers worldwide due to their versatility as carboxylic acid protecting groups, chiral auxiliaries, and ligands for asymmetric catalysis. Electrospray ionization tandem mass spectrometric (ESI-MS/MS) analysis of five 2-oxazoline derivatives has been conducted, in order to understand the influence of the side chain on the gas-phase dissociation of these protonated compounds under collision-induced dissociation (CID) conditions. METHODS: Mass spectrometric analyses were conducted in a quadrupole time-of-flight (Q-TOF) spectrometer fitted with electrospray ionization source. Protonation sites have been proposed on the basis of the gas-phase basicity, proton affinity, atomic charges, and a molecular electrostatic potential map obtained on the basis of the quantum chemistry calculations at the B3LYP/6-31 + G(d, p) and G2(MP2) levels. RESULTS: Analysis of the atomic charges, gas-phase basicity and proton affinities values indicates that the nitrogen atom is a possible proton acceptor site. On the basis of these results, two main fragmentation processes have been suggested: one taking place via neutral elimination of the oxazoline moiety (99 u) and another occurring by sequential elimination of neutral fragments with 72 u and 27 u. These processes should lead to formation of R+. CONCLUSIONS: The ESI-MS/MS experiments have shown that the side chain could affect the dissociation mechanism of protonated 2-oxazoline derivatives. For the compound that exhibits a hydroxyl at the lateral chain, water loss has been suggested to happen through an E2-type elimination, in an exothermic step. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
Fogo Selvagem (FS) is an autoimmune bullous disease with pathogenic IgG autoantibodies recognizing desmoglein 1 (Dsg1), a desmosomal glycoprotein. In certain settlements of Brazil, a high prevalence of FS (3%) is reported, suggesting environmental factors as triggers of the autoimmune response. Healthy individuals from endemic areas recognize nonpathogenic epitopes of Dsg1, and exposure to hematophagous insects is a risk factor for FS. Fogo selvagem and Chagas disease share some geographic sites, and anti-Dsg1 has been detected in Chagas patients. Indeterminate Chagas disease was identified in a Brazilian Amerindian population of high risk for FS. In counterpart, none of the FS patients living in the same geographic region showed reactivity against Trypanosoma cruzi. The profile of anti-Dsg1 antibodies showed positive results in 15 of 40 FS sera and in 33 of 150 sera from healthy individuals from endemic FS sites, and no cross-reactivity between Chagas disease and FS was observed.
Resumo:
Aims: Cytokines interfere with signaling pathways and mediators of vascular contraction. Endothelin-1 (ET-1) plays a major role on vascular dysfunction in conditions characterized by increased circulating levels of adipokines. In the present study we tested the hypothesis that the adipokine chemerin increases vascular contractile responses via activation of ET-1/ET-1 receptors-mediated pathways. Main methods: Male, 10-12 week-old Wistar rats were used. Endothelium-intact and endothelium-denuded aortic rings were incubated with chemerin (0.5 ng/mL or 5 ng/mL, for 1 or 24 h), and isometric contraction was recorded. Protein expression was determined by Western blotting. Key findings: Constrictor responses to phenylephrine (PE) and ET-1 were increased in vessels treated for 1 h with chemerin. Chemerin incubation for 24 h decreased PE contractile response whereas it increased the sensitivity to ET-1. Endothelium removal significantly potentiated chemerin effects on vascular contractile responses to PE and ET-1. Incubation with either an ERK1/2 inhibitor (PD98059) or ETA antagonist (BQ123) abolished chemerin effects on PE- and ET-1-induced vasoconstriction. Phosphorylation of MEK1/2 and ERK1/2 was significantly increased in vessels treated with chemerin for 1 and 24 h. Phosphorylation of these proteins was further increased in vessels incubated with ET-1 plus chemerin. ET-1 increased MEK1/2, ERK1/2 and MKP1 protein expression to values observed in vessels treated with chemerin. Significance: Chemerin increases contractile responses to PE and ET-1 via ERK1/2 activation. Our study contributes to a better understanding of the mechanisms by which the adipose tissue affects vascular function and, consequently, the vascular alterations present in obesity and related diseases. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Aims: Adrenomedullin (AM) is a peptide that displays cardiovascular protective activity. We investigated the effects of chronic ethanol consumption on arterial blood pressure, vascular reactivity to AM and the expression of AM system components in the rat mesenteric arterial bed (MAB). Methods: Male Wistar rats were treated with ethanol (20% vol/vol) for 6 weeks. Systolic, diastolic and mean arterial blood pressure were monitored in conscious rats. Vascular reactivity experiments were performed on isolated rat MAB. Matrix metalloproteinase-2 (MMP-2) levels were determined by gelatin zymography. Nitrite and nitrate generation were measured by chemiluminescence. Protein and mRNA levels of pre-pro-AM, CRLR (calcitonin receptor-like receptor) and RAMP1, 2 and 3 (receptor activity-modifying proteins) were assessed by western blot and quantitative real-time polymerase chain reaction, respectively. Results: Ethanol consumption induced hypertension and decreased the relaxation induced by AM and acetylcholine in endothelium-intact rat MAB. Phenylephrine-induced contraction was increased in endothelium-intact MAB from ethanol-treated rats. Ethanol consumption did not alter basal levels of nitrate and nitrite, nor did it affect the expression of MMP-2 or the net MMP activity in the rat MAB. Ethanol consumption increased mRNA levels of pre-pro-AM and protein levels of AM in the rat MAB. Finally, no differences in protein levels or mRNA of CRLR and RAMP1, 2 and 3 were observed after treatment with ethanol. Conclusion: Our study demonstrates that ethanol consumption increases blood pressure and the expression of AM in the vasculature and reduces the relaxation induced by this peptide in the rat MAB.
Resumo:
Background: The biobehavioural pain reactivity and recovery of preterm infants in the neonatal period may reflect the capacity of the central nervous system to regulate neurobiological development. Objective: The aim of the present study was to analyse the influence of the neonatal clinical risk for illness severity on biobehavioural pain reactivity in preterm infants. Methods: Fifty-two preterm infants were allocated into two groups according to neonatal severity of illness, as measured by the Clinical Risk Index for Babies (CRIB). The low clinical risk (LCr) group included 30 neonates with CRIB scores <4, and the high clinical risk (HCr) group included 22 neonates with CRIB scores >= 4. Pain reactivity was assessed during a blood collection, which was divided into five phases (baseline, antisepsis, puncture, recovery-dressing and recovery-resting). Behavioral pain reactivity was measured using the scores, and magnitude of responses in Neonatal Facial Coding System (NFCS) and Sleep-Wake States Scale (SWS). The heart rate was continuously recorded. Results: The HCr demonstrated a higher magnitude of response on the SWS score from the baseline to the puncture phase than the LCr. Also, the HCr exhibited a higher mean heart rate and minimum heart rate than the LCr in the recovery-resting phase. In addition, the HCr exhibited a higher minimum heart rate from the baseline to the recovery-resting phase than the LCr. Conclusion: The infants exhibiting a high neonatal clinical risk showed high arousal during the puncture procedure and higher physiological reactivity in the recovery phase.
Resumo:
Sao Paulo Research Foundation [FAPESP/05/57710-3]