985 resultados para Reactive species
Resumo:
A key aspect underpinning life-history theory is the existence of trade-offs. Trade-offs occur because resources are limited, meaning that individuals cannot invest in all traits simultaneously, leading to costs for traits such as growth and reproduction. Such costs may be the reason for the sub-maximal growth rates that are often observed in nature, though the fitness consequences of these costs would depend on the effects on lifetime reproductive success. Recently, much attention has been given to the physiological mechanism that might underlie these life-history trade-offs, with oxidative stress (OS) playing a key role. OS is characterised by a build-up of oxidative damage to tissues (e.g. protein, lipids and DNA) from attack by reactive species (RS). RS, the majority of which are by-products of metabolism, are usually neutralised by antioxidants, however OS occurs when there is an imbalance between the two. There are two main theories linking OS with growth and reproduction. The first is that traits like growth and reproduction, being metabolically demanding, lead to an increase in RS production. The second involves the diversion of resources away from self-maintenance processes (e.g. the redox system) when individuals are faced with enhanced growth or reproductive expenditure. Previous research investigating trade-offs involving growth or reproduction and self-maintenance has been equivocal. One reason for this could be that associations among redox biomarkers can vary greatly so that the biomarker selected for analysis can influence the conclusion reached about an individual’s oxidative status. Therefore the first aim of my thesis was to explore the strength and pattern of integration of five biomarkers of OS (three antioxidants, one damage and one general oxidation measure) in wild blue tit (Cyanistes caeruleus) adults and nestlings (Chapter 2). In doing so, I established that all five biomarkers should be included in future analyses, thus using this collection of biomarkers I explored my next aims; whether enhanced growth (Chapters 3 and 4) or reproductive effort (Chapter 5) can lead to increased OS levels, if these traits are traded off against self-maintenance. I accomplished these aims using both a meta-analytic and experimental approach, the latter involving manipulation of brood size in wild blue tits in order to experimentally alter growth rate of nestlings and provisioning rate (a proxy for reproductive expenditure) of adults. I also investigated the potential for redox integration to be used as an index of body condition (Chapter 2), allowing predictions about future fitness consequences of changes to oxidative state to be made. A growth – self-maintenance trade off was supported by my meta-analytic results (Chapter 4) which found OS to be a constraint on growth. However, when faced with experimentally enhanced growth, animals were typically not able to adjust this trade-off so that oxidative damage resulted. This might support the idea that energetically expensive growth causes resources to be diverted away from the redox system; however, antioxidants did not show an overall reduction in response to growth in the meta-analysis suggesting that oxidative costs of growth may result from increased RS production due to the greater metabolism needed for enhanced growth. My experimental data (Chapter 3) showed a similar pattern, with raised protein damage levels (protein carbonyls; PCs) in the fastest growing blue tit chicks in a brood, compared with their slower growing sibs. These within-brood differences in OS levels likely resulted from within-brood hierarchies and might have masked any between-brood differences, which were not observed here. Despite evidence for a growth – self-maintenance trade off, my experimental results on blue tits found no support for the hypothesis that self-maintenance is also traded off against reproduction, another energetically demanding trait. There was no link between experimentally altered reproductive expenditure and OS, nor was there a direct correlation between reproductive effort and OS (Chapter 5). However, there are various factors that likely influence whether oxidative costs are observed, including environmental conditions and whether such costs are transient. This emphasises the need for longitudinal studies following the same individuals over multiple years and across a wide range of habitats that differ in quality. This would allow investigation into how key life events interact; it might be that raised OS levels from rapid early growth have the potential to constrain reproduction or that high parental OS levels constrain offspring growth. Any oxidative costs resulting from these life-history trade-offs have the potential to impact on future fitness. Redox integration of certain biomarkers might prove to be a useful tool in making predictions about fitness, as I found in Chapter 2, as well as establishing how the redox system responds, as a whole, to changes to growth and reproduction. Finally, if the tissues measured can tolerate a given level of OS, then the level of oxidative damage might be irrelevant and not impact on future fitness at all.
Resumo:
After harvest, plants remain living organisms with the capacity to carry out metabolic processes. Thus, from the moment they are detached from the source of nutrients, they become entirely dependent on their own organic reserves [1]. Postharvest changes cannot be stopped, but they can be slowed within certain limits. Therefore, this study was conducted to evaluate the effects induced by storage in the profiles of sugars, organic acids and tocopherols of two leafy vegetables. Wild samples of watercress (Nasturtium officinale R. Br.) and buckler sorrel (Rumex induratus Boiss. & Reut.), from the Northeastern region of Portugal, were analyzed after harvest (control) and after storage in sterilized packages (using the passive modification mode) at 4ºC for 7 or 12 days, respectively. Analyses were performed by high-performance liquid chromatography (HPLC) using different detectors, i.e., a refraction index detector (RID) for free sugars, a photodiode array detector (PDA) for organic acids, and a fluorescence (FP) detector for tocopherols. The storage time decreased the levels of fructose, glucose and total sugars in both leafy vegetables and increased the total organic acids content. The decrease of these sugars can be related to its use by the plant to produce the required energy. Ascorbic acid was detected in buckler sorrel and decreased with storage; while the amount of malic acid increased in both species. Curiously, all the tocopherol isoforms increased in watercress, while buckler sorrel just present higher values of γ- and δ- tocopherols. In fact, the de novo synthesis of these bioactives compounds can be a plant strategy to fight against the reactive species that are produced during storage. The knowledge of the behavior of these compounds during storage that was achieved with this study [2] may contribute to the development of more effective preservation strategies for leafy vegetables.
Resumo:
The hydroxyl radical (OH) removes most atmospheric pollutants from air. The loss frequency of OH radicals due to the combined effect of all gas-phase OH reactive species is a measureable quantity termed total OH reactivity. Here we present total OH reactivity observations in pristine Amazon rainforest air, as a function of season, time-of-day and height (0?80 m). Total OH reactivity is low during wet (10 s1) and high during dry season (62 s1). Comparison to individually measured trace gases reveals strong variation in unaccounted for OH reactivity, from 5 to 15% missing in wet-season afternoons to mostly unknown (average 79%) during dry season. During dry-season afternoons isoprene, considered the dominant reagent with OH in rainforests, only accounts for B20% of the total OH reactivity. Vertical profiles of OH reactivity are shaped by biogenic emissions, photochemistry and turbulent mixing. The rainforest floor was identified as a significant but poorly characterized source of OH reactivity.
Resumo:
The current environmental and socio-economic situation promotes the development of carbon-neutral and sustainable solutions for energy supply. In this framework, the use of hydrogen has been largely indicated as a promising alternative. However, safety aspects are of concern for storage and transportation technologies. Indeed, the current know-how promotes its transportation via pipeline as compressed gas. However, the peculiar properties of hydrogen make the selection of suitable materials challenging. For these reasons, dilution with less reactive species has been considered a short and medium solution. As a way of example, methane-hydrogen mixtures are currently transported via pipelines. In this case, the hydrogen content is limited to 20% in volume, thus keeping the dependence on natural gas sources. On the contrary, hydrogen can be conveniently transported by mixing it with carbon dioxide deriving from carbon capture and storage technologies. In this sense, the interactions between hydrogen and carbon dioxide have been poorly studied. In particular, the effects of composition and operative conditions in the case of accidental release or for direct use in the energy supply chain are unknown. For these reasons, the present work was devoted to the characterization of the chemical phenomena ruling the system. To this aim, laminar flames containing hydrogen and carbon dioxide in the air were investigated experimentally and numerically. Different detailed kinetic mechanisms largely validated were considered at this stage. Significant discrepancies were observed among numerical and experimental data, especially once a fuel consisting of 40%v of hydrogen was studied. This deviation was attributed to the formation of a cellular flame increasing the overall reactivity. Hence, this observation suggests the need for combined models accounting for peculiar physical phenomena and detailed kinetic mechanisms characterizing the hydrogen-containing flames.
Resumo:
Microcystins (MC), a family of heptapeptide toxins produced by some genera of Cyanobacteria, have potent hepatotoxicity and tumor-promoting activity. Leukocyte infiltration in the liver was observed in MC-induced acute intoxication. Although the mechanisms of hepatotoxicity are still unclear, neutrophil infiltration in the liver may play an important role in triggering toxic injury and tumor development. The present study reports the effects of MC-LA, MC-YR and MC-LR (1 and 1000 nM) on human and rat neutrophils functions in vitro. Cell viability, DNA fragmentation, mitochondrial membrane depolarization and intracellular reactive oxygen species (ROS) levels were measured by flow cytometry. Extracellular ROS content was measured by lucigenin-amplified chemiluminescence, and cytokines were determined by ELISA. We found that these MC increased interleukin-8 (IL-8), cytokine-induced neutrophil chemoattractant-2 alpha beta (CINC-2 alpha beta) and extracellular ROS levels in human and rat neutrophils. Apart from neutrophil presence during the inflammatory process of MC-induced injury, our results suggest that hepatic neutrophil accumulation is further increased by MC-induced neutrophil-derived chemokine. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We have used two different probes with distinct detection properties, dichlorodihydrofluorescein diacetate and Amplex Red/horseradish peroxidase, as well as different respiratory substrates and electron transport chain inhibitors, to characterize the reactive oxygen species (ROS) generation by the respiratory chain in calcium-overloaded mitochondria. Regardless of the respiratory substrate, calcium stimulated the mitochondrial generation of ROS, which were released at both the mitochondrial-matrix side and the extramitochondrial space, in a way insensitive to the mitochondrial permeability transition pores inhibitor cyclosporine A. In glutamate/malate-energized mitochondria, inhibition at complex I or complex III (ubiquinone cycle) similarly modulated ROS generation at either mitochondrial-matrix side or extramitochondrial space; this also occurred when the backflow of electrons to complex I in succinate-energized mitochondria was inhibited. On the other hand, in succinate-energized mitochondria the modulation of ROS generation at mitochondrial-matrix side or extra-mitochondrial space depends on the site of complex III which was inhibited. These results allow a straight comparison between the effects of different respiratory substrates and electron transport chain inhibitors on ROS generation at either mitochondrial-matrix side or extra-mitochondrial space in calcium-overloaded mitochondria.
Resumo:
We previously demonstrated that conidia from Aspergillus fumigatus incubated with menadione and paraquat increases activity and expression of cyanide-insensitive alternative oxidase (AOX). Here, we employed the RNA silencing technique in A. fumigatus using the vector pALB1/aoxAf in order to down-regulate the aox gene. Positive transformants for aox gene silencing of A. fumigatus were more susceptible both to an imposed in vitro oxidative stress condition and to macrophages killing, suggesting that AOX is required for the A. fumigatus pathogenicity, mainly for the survival of the fungus conidia during host infection and resistance to reactive oxygen species generated by macrophages.
Resumo:
In addition to adenosine triphosphate (ATP) production, mitochondria have been implicated in the regulation of several physiological responses in plants, such as programmed cell death (PCD) activation. Salicylic acid (SA) and reactive oxygen species (ROS) are essential signaling molecules involved in such physiological responses; however, the mechanisms by which they act remain unknown. In non-photosynthesizing tissues, mitochondria appear to serve as the main source of ROS generation. Evidence suggests that SA and ROS could regulate plant PCD through a synergistic mechanism that involves mitochondria. Herein, we isolate and characterize the mitochondria from non-photosynthesizing cell suspension cultures of Rubus fruticosus. Furthermore, we assess the primary site of ROS generation and the effects of SA on isolated organelles. Mitochondrial Complex III was found to be the major source of ROS generation in this model. In addition, we discovered that SA inhibits the electron transport chain by inactivating the semiquinone radical during the Q cycle. Computational analyses confirmed the experimental data, and a mechanism for this action is proposed.
Resumo:
Objective: To investigate: 1) the impact of clinical varicocele on reactive oxygen species (ROS) levels in neat and washed semen in a proven fertile population; and 2) the correlation between ROS levels, testicular volume, and varicocele grade in the same population of fertile men. Design: Prospective controlled clinical study. Setting: Andrology laboratory at tertiary-care hospital. Patient(s): One hundred fourteen healthy fertile men (81 normal fertile and 33 fertile with clinical varicocele) and 30 infertile patients (control subjects). Intervention(s): Standard semen analysis and measurement of sperm ROS production. Main Outcome Measure(s): Seminal parameters, seminal ROS levels, seminal leukocyte levels, clinical varicocele, and testis size. Result(s): Thirty-three of the 11.4 (29%) fertile men had clinical varicocele (grade 1, n = 14; grade 2, n = 11; and grade 3, n = 8), and the remaining 81 (71%) had a normal physical examination. Levels of ROS and semen quality did not differ significantly between the fertile men with or without varicocele. No significant differences in ROS levels in neat and washed semen were observed compared with fertile men with grades 2 and 3 varicocele and with fertile men with varicocele grade 1. The ROS levels in neat and washed semen were not significantly correlated with varicocele grade in fertile men. No significant correlations between ROS levels and testis volume were observed between the fertile groups. Conclusion(s): The presence of clinical varicocele in fertile men is not associated with higher seminal ROS levels or abnormal semen parameters. Levels of ROS are not correlated with varicocele grade or testis volume in the same population of fertile men.
Resumo:
OBJECTIVES The effects of advancing paternal age on the male reproductive system are well known, but its effects on fecundity remain controversial. Although oxidative stress is associated with poor semen quality and function, a relationship with advancing male age has not been established. The objective of this study was to analyze the relationship between male age and seminal reactive oxygen species (ROS) levels in men presenting for voluntary sterilization. METHODS We prospectively evaluated 98 fertile men who were candidates for vasectomy. These were divided into 2 age groups: less than 40 years (n = 78) and 40 or more years (n = 20). We used 46 infertile patients as positive controls. Standard semen analysis, seminal leukocyte count and ROS levels were measured in all samples. Fertile men with leukocytospermia were excluded. RESULTS The mean age of the men was 35.1 +/- 5.6 years. Men 40 years and older had significantly higher ROS levels compared with younger men (P < 0.001). We observed a positive correlation between seminal ROS levels and age (r = 0.20; P = 0.040). In addition, ROS was negatively correlated with sperm concentration (r = -0-48; P < 0.001) and motility (r = -0.21; P = 0.030). CONCLUSIONS Reactive oxygen species levels are significant higher in seminal ejaculates of healthy fertile men older than 40 years. ROS levels in whole ejaculate are significantly correlated to age among fertile men. Because ROS are clearly implicated in the pathogenesis of male infertility, these data suggest that delayed fatherhood may reduce the chances of pregnancy as men become progressively less fertile with age.
Resumo:
Purpose: Eicosapentaenoic acid has been tested in bladder cancer as a synergistic cytotoxic agent in the form of meglumine-eicosapentaenoic acid, although its mechanism of action is poorly understood in this cancer. The current study analyzed the mechanisms by which eicosapentaenoic acid alters T24/83 human bladder cancer metabolism in vitro. Materials and Methods: T24/83 human bladder cancer cells were exposed to eicosapentaenoic acid for 6 to 24 hours in vitro and incorporation profiles were determined. Effects on membrane phospholipid incorporation, energy metabolism, mitochondrial activity, cell proliferation and apoptosis were analyzed Reactive oxygen species and lipid peroxide production were also determined. Results: Eicosapentaenoic acid was readily incorporated into membrane phospholipids with a considerable amount present in mitochondrial cardiolipin. Energy metabolism was significantly altered by eicosapentaenoic acid, accompanied by decreased mitochondrial membrane potential, and increased lipid peroxide and reactive oxygen species generation. Subsequently caspase-3 activation and apoptosis were detected in eicosapentaenoic acid exposed cells, leading to decreased cell numbers. Conclusions: These findings confirm that eicosapentaenoic acid is a potent cytotoxic agent in bladder cancer cells and provide important insight into the mechanisms by which eicosapentaenoic acid causes these changes. The changes in membrane composition that can occur with eicosapentaenoic acid likely contribute to the enhanced drug cytotoxicity reported previously in meglumine-eicosapentaenoic acid/epirubicin/mitomycin studies. Dietary manipulation of the cardiolipin fatty acid composition may provide an additional method for stimulating cell death in bladder cancer. In vivo studies using intravesical and dietary manipulation of fatty acid metabolism in bladder cancer merit further attention.
Resumo:
The aim of this study was to determine whether para-chloroaniline (PCA) and/or reactive oxygen species (ROS) are generated by chlorhexidine (CHX) alone or after CHX is mixed with calcium hydroxide at different time points. Mass spectrometry was performed to detect PCA in samples of 0.2% CHX and Ca(OH)2 mixed with 0.2% CHX. High-performance liquid chromatography was used to confirm the presence of CHX in the mixture with Ca(OH)2. The samples were analyzed immediately after mixing and after 7 and 14 days. During the intervals of the experiment, the samples were maintained at 36.5 degrees C and 95% relative humidity. PCA was detected in the 0.2% CHX solution after 14 days. The mixture of CHX with Ca(CH)2 liberated ROS at all time points, but no traces of CHX were present in the mixture as a result of immediate degradation of the CHX. (J Endod 2008;34:1508-1514)
Resumo:
This investigation aimed to elucidate the relative roles of putative brevetoxins, reactive oxygen species and free fatty acids as the toxic principle of the raphidophyte Chattonella marina, using damselfish as the bioassay. Our investigations on Australian C. marina demonstrated an absence or only very low concentrations of brevetoxin-like compounds by radio-receptor binding assay and liquid chromatography-mass spectroscopy techniques. Chattonella is unique in its ability to produce levels of reactive oxygen species 100 times higher than most other algal species. However, high levels of superoxide on their own were found not to cause fish mortalities. Lipid analysis revealed this raphidophyte to contain high concentrations of the polyunsaturated fatty acid eicosapentaenoic acid (EPA; 18-23% of fatty acids), which has demonstrated toxic properties to marine organisms. Using damselfish as a model organism, we demonstrated that the free fatty acid (FFA) form of EPA produced a mortality and fish behavioural response similar to fish exposed to C. marina cells. This effect was not apparent when fish were exposed to other lipid fractions including a triglyceride containing fish oil, docosahexaenoate-enriched ethyl ester, or pure brevetoxin standards. The presence of superoxide together with low concentrations of EPA accelerated fish mortality rate threefold. We conclude that the enhancement of ichthyotoxicity of EPA in the presence of superoxide can account for the high C. marina fish killing potential. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
Sera from patients infected with Taenia solium, Hymenolepis nana and Echinococcus granulosus were tested against homologous and heterologous parasite antigens using an ELISA assay, and a high degree of cross-reactivity was verified. To identify polypeptides responsible for this cross reactivity, the Enzyme Linked Immunoelectro Transfer Blot (EITB) was used. Sera from infected patients with T.solium, H.nana, and E.granulosus were assessed against crude, ammonium sulphate precipitated (TSASP), and lentil-lectin purified antigens of T.solium and crude antigens of.H.nana and E.granulosus. Several bands, recognized by sera from patients with T.solium, H.nana, and E.granulosus infections, were common to either two or all three cestodes. Unique reactive bands in H.nana were noted at 49 and 66 K-Da and in E.granulosus at 17-21 K-Da and at 27-32 K-Da. In the crude cysticercosis extract, a specific non glycoprotein band was present at 61-67 K-Da in addiction to specific glycoprotein bands of 50, 42, 24, 21, 18, 14, and 13 K-Da. None of the sera from patients with H.nana or E.granulosus infection cross reacted with these seven glycoprotein bands considered specific for T.solium infection.