930 resultados para Reactive optimal power flow
Resumo:
Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation, and uses little land. In operation, the overall cost per unit of energy produced is similar to the cost for new coal and natural gas installations. However, the stochastic behaviour of wind speeds leads to significant disharmony between wind energy production and electricity demand. Wind generation suffers from an intermittent characteristics due to the own diurnal and seasonal patterns of the wind behaviour. Both reactive power and voltage control are important under varying operating conditions of wind farm. To optimize reactive power flow and to keep voltages in limit, an optimization method is proposed in this paper. The objective proposed is minimization of the voltage deviations of the load buses (Vdesired). The approach considers the reactive power limits of wind generators and co-ordinates the transformer taps. This algorithm has been tested under practically varying conditions simulated on a test system. The results are obtained on a system of 50-bus real life equivalent power network. The result shows the efficiency of the proposed method.
Resumo:
This paper presents a methodology to address reactive power compensation using Evolutionary Particle Swarm Optimization (EPSO) technique programmed in the MATLAB environment. The main objective is to find the best operation point minimizing power losses with reactive power compensation, subjected to all operational constraints, namely full AC power flow equations, active and reactive power generation constraints. The methodology has been tested with the IEEE 14 bus test system demonstrating the ability and effectiveness of the proposed approach to handle the reactive power compensation problem.
Resumo:
This paper presents some initial concepts for including reactive power in linear methods for computing Available Transfer Capability (ATC). It is proposed an approximation for the reactive power flows computation that uses the exact circle equations for the transmission line complex flow, and then it is determined the ATC using active power distribution factors. The transfer capability can be increased using the sensitivities of flow that show the best group of buses which can have their reactive power injection modified in order to remove the overload in the transmission lines. The results of the ATC computation and of the use of the sensitivities of flow are presented using the Cigré 32-bus system. © 2004 IEEE.
Resumo:
Distributed generators (DGs) are defined as generators that are connected to a distribution network. The direction of the power flow and short-circuit current in a network could be changed compared with one without DGs. The conventional protective relay scheme does not meet the requirement in this emerging situation. As the number and capacity of DGs in the distribution network increase, the problem of coordinating protective relays becomes more challenging. Given this background, the protective relay coordination problem in distribution systems is investigated, with directional overcurrent relays taken as an example, and formulated as a mixed integer nonlinear programming problem. A mathematical model describing this problem is first developed, and the well-developed differential evolution algorithm is then used to solve it. Finally, a sample system is used to demonstrate the feasiblity and efficiency of the developed method.
Resumo:
Bidirectional Inductive Power Transfer (IPT) systems are preferred for Vehicle-to-Grid (V2G) applications. Typically, bidirectional IPT systems consist of high order resonant networks, and therefore, the control of bidirectional IPT systems has always been a difficulty. To date several different controllers have been reported, but these have been designed using steady-state models, which invariably, are incapable of providing an accurate insight into the dynamic behaviour of the system A dynamic state-space model of a bidirectional IPT system has been reported. However, currently this model has not been used to optimise the design of controllers. Therefore, this paper proposes an optimised controller based on the dynamic model. To verify the operation of the proposed controller simulated results of the optimised controller and simulated results of another controller are compared. Results indicate that the proposed controller is capable of accurately and stably controlling the power flow in a bidirectional IPT system.
Resumo:
A power electronics-based buffer is examined in which through control of its PWM converters, the buffer-load combination is driven to operate under either constant power or constant impedance modes. A battery, incorporated within the buffer, provides the energy storage facility to facilitate the necessary power flow control. Real power demand from upstream supply is regulated under fault condition, and the possibility of voltage or network instability is reduced. The proposed buffer is also applied to a wind farm. It is shown that the buffer stabilizes the power contribution from the farm. Based on a battery cost-benefit analysis, a method is developed to determine the optimal level of the power supplied from the wind farm and the corresponding capacity of the battery storage system.
Resumo:
We consider an optimal power and rate scheduling problem for a multiaccess fading wireless channel with the objective of minimising a weighted sum of mean packet transmission delay subject to a peak power constraint. The base station acts as a controller which, depending upon the buffer lengths and the channel state of each user, allocates transmission rate and power to individual users. We assume perfect channel state information at the transmitter and the receiver. We also assume a Markov model for the fading and packet arrival processes. The policy obtained represents a form of Indexability.
Resumo:
This paper proposes new direct power control (DPC) strategies for three-phase DC/AC converters with improved dynamic response and steady-state performance. As with an electrical machine, source and converter flux which equal the integration of the respective source and converter voltage are used to define active and reactive power flow. Optimization of the look-up-table used in conventional DPC is outlined first, to improve the power control and reduce the current distortion. Then constant switching frequency DPC is developed where the required converter voltage vector within a fixed half switching period is calculated directly from the active and reactive power errors. Detailed angle compensation due to the finite sampling frequency and the use of integral controller to further improve the power control accuracy, are described. Both simulation and experimental results are used to compare conventional DPC and vector control, and to demonstrate the effectiveness and robustness of the proposed control strategies during active and reactive power steps, and line inductance variations.
Resumo:
Important research effort has been devoted to the topic of optimal planning of distribution systems. The non linear nature of the system, the need to consider a large number of scenarios and the increasing necessity to deal with uncertainties make optimal planning in distribution systems a difficult task. Heuristic techniques approaches have been proposed to deal with these issues, overcoming some of the inherent difficulties of classic methodologies. This paper considers several methodologies used to address planning problems of electrical power distribution networks, namely mixedinteger linear programming (MILP), ant colony algorithms (AC), genetic algorithms (GA), tabu search (TS), branch exchange (BE), simulated annealing (SA) and the Bender´s decomposition deterministic non-linear optimization technique (BD). Adequacy of theses techniques to deal with uncertainties is discussed. The behaviour of each optimization technique is compared from the point of view of the obtained solution and of the methodology performance. The paper presents results of the application of these optimization techniques to a real case of a 10-kV electrical distribution system with 201 nodes that feeds an urban area.
Resumo:
This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An efficient heuristic algorithm is presented in this work in order to solve the optimal capacitor placement problem in radial distribution systems. The proposal uses the solution from the mathematical model after relaxing the integrality of the discrete variables as a strategy to identify the most attractive bus to add capacitors to each step of the heuristic algorithm. The relaxed mathematical model is a nonlinear programming problem and is solved using a specialized interior point method, The algorithm still incorporates an additional strategy of local search that enables the finding of a group of quality solutions after small alterations in the optimization strategy. Proposed solution methodology has been implemented and tested in known electric systems getting a satisfactory outcome compared with metaheuristic methods.The tests carried out in electric systems known in specialized literature reveal the satisfactory outcome of the proposed algorithm compared with metaheuristic methods. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Smart microgrids offer a new challenging domain for power theories and metering techniques because they include a variety of intermittent power sources which positively impact on power flow and distribution losses but may cause voltage asymmetry and frequency variation. In smart microgrids, the voltage distortion and asymmetry in presence of poly-phase nonlinear loads can be also greater than in usual distribution lines fed by the utility, thus affecting measurement accuracy and possibly causing tripping of protections. In such a context, a reconsideration of power theories is required since they form the basis for supply and load characterization. A revision of revenue metering techniques is also suggested to ensure a correct penalization of the loads for their responsibility in generating reactive power, voltage asymmetry, and distortion. This paper shows that the conservative power theory provides a suitable background to cope with smart grids characterization and metering needs. Simulation and experimental results show the properties of the proposed approach.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Devido ao auge do crescimento industrial na Região Norte e, em especial, o Pólo Industrial de Manaus (PIM), são necessários obter ferramentas matemáticas que facilitem ao especialista tomar decisões sobre a seleção e dimensionamento dos filtros harmônicos que proporcionam neutralizar os efeitos prejudiciais dos harmônicos gerados pelas cargas não lineares da indústria e alcançar conformidade com os padrões das normas de qualidade de energia correspondentes. Além disso, como os filtros harmônicos passivos têm a capacidade de gerar potência reativa à rede, estes meios são eficazes compensadores de potência reativa e, portanto, podem conseguir uma economia significativa no faturamento de energia elétrica consumida por essas instalações industriais. Esta tese tem como objetivo geral desenvolver um método matemático e uma ferramenta computacional para a seleção da configuração e parâmetros do projeto de um conjunto de filtros harmônicos passivos para sistemas elétricos industriais. Nesta ótica, o problema de otimização da compensação de harmônicos por meio de filtros passivos foi formulado como um problema multiobjetivo que considera tanto os objetivos da redução da distorção harmônica como da efetividade econômica do projeto considerando as características das tarifas brasileiras. Todavia, a formulação apresentada considera as restrições relevantes impostas pelas normas brasileiras e estrangeiras. A solução computacional para este problema foi conseguida, usando o algoritmo genético NSGA-II que determina um conjunto de soluções ótimas de Pareto (Fronteira) que permitem ao projetista escolher as soluções mais adequadas para o problema. Por conseguinte, a ferramenta computacional desenvolvida tem várias novidades como: não só calcula os parâmetros que caracterizam os filtros, como também seleciona o tipo de configuração e o número de ramos do filtro em cada barra candidata de acordo com um conjunto de configurações pré-estabelecidas; têm implementada duas normas para a avaliação das restrições de qualidade de energia (Prodist-Módulo 8 e IEEE 519-92) que podem ser selecionadas pelo usuário; determina soluções com bons indicadores de desempenho para vários cenários característicos e não característicos do sistema que permitem a representação das as variações diárias da carga; das variações dos parâmetros do sistema e dos filtros; avalia o custo das contas de energia numa rede elétrica industrial que tem diferentes condições de operação (cenários característicos); e avalia o efeito econômico de filtros de harmônicos como compensadores de potência reativa. Para desenvolver a ferramenta computacional adequada desta tese, foi empregado um modelo trifásico em coordenadas de fase para redes de energia elétrica industriais e de serviços onde foram feitos vários programas utilizando várias ferramentas computacionais adicionais. Estas ferramentas compreendem um programa de varredura de freqüência, um programa do fluxo de harmônicos por injeção de correntes e um programa de fluxo de potência à freqüência fundamental. Os resultados positivos desta tese, a partir da análise de vários exemplos práticos, mostram as vantagens do método desenvolvido.