991 resultados para Reaction-diffusion equation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Space competition effects are well-known in many microbiological and ecological systems. Here we analyze such an effectin human populations. The Neolithic transition (change from foraging to farming) was mainly the outcome of a demographic process that spread gradually throughout Europe from the Near East. In Northern Europe, archaeological data show a slowdown on the Neolithic rate of spread that can be related to a high indigenous (Mesolithic) population density hindering the advance as a result of the space competition between the two populations. We measure this slowdown from a database of 902 Early Neolithic sites and develop a time-delayed reaction-diffusion model with space competition between Neolithic and Mesolithic populations, to predict the observed speeds. The comparison of the predicted speed with the observations and with a previous non-delayed model show that both effects, the time delay effect due to the generation lag and the space competition between populations, are crucial in order to understand the observations

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a very fine grid hydrological model based on the spatiotemporal repartition of precipitation and on the topography. The goal is to estimate the flood on a catchment area, using a Probable Maximum Precipitation (PMP) leading to a Probable Maximum Flood (PMF). The spatiotemporal distribution of the precipitation was realized using six clouds modeled by the advection-diffusion equation. The equation shows the movement of the clouds over the terrain and also gives the evolution of the rain intensity in time. This hydrological modeling is followed by a hydraulic modeling of the surface and subterranean flows, done considering the factors that contribute to the hydrological cycle, such as the infiltration, the exfiltration and the snowmelt. This model was applied to several Swiss basins using measured rain, with results showing a good correlation between the simulated and observed flows. This good correlation proves that the model is valid and gives us the confidence that the results can be extrapolated to phenomena of extreme rainfall of PMP type. In this article we present some results obtained using a PMP rainfall and the developed model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We generalize a previous model of time-delayed reaction–diffusion fronts (Fort and Méndez 1999 Phys. Rev. Lett. 82 867) to allow for a bias in the microscopic random walk of particles or individuals. We also present a second model which takes the time order of events (diffusion and reproduction) into account. As an example, we apply them to the human invasion front across the USA in the 19th century. The corrections relative to the previous model are substantial. Our results are relevant to physical and biological systems with anisotropic fronts, including particle diffusion in disordered lattices, population invasions, the spread of epidemics, etc

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a finite element approximation of a system of partial differential equations describing the coupling between the propagation of electrical potential and large deformations of the cardiac tissue. The underlying mathematical model is based on the active strain assumption, in which it is assumed that a multiplicative decomposition of the deformation tensor into a passive and active part holds, the latter carrying the information of the electrical potential propagation and anisotropy of the cardiac tissue into the equations of either incompressible or compressible nonlinear elasticity, governing the mechanical response of the biological material. In addition, by changing from an Eulerian to a Lagrangian configuration, the bidomain or monodomain equations modeling the evolution of the electrical propagation exhibit a nonlinear diffusion term. Piecewise quadratic finite elements are employed to approximate the displacements field, whereas for pressure, electrical potentials and ionic variables are approximated by piecewise linear elements. Various numerical tests performed with a parallel finite element code illustrate that the proposed model can capture some important features of the electromechanical coupling, and show that our numerical scheme is efficient and accurate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nipple-like nanostructures covering the corneal surfaces of moths, butterflies, and Drosophila have been studied by electron and atomic force microscopy, and their antireflective properties have been described. In contrast, corneal nanostructures of the majority of other insect orders have either been unexamined or examined by methods that did not allow precise morphological characterization. Here we provide a comprehensive analysis of corneal surfaces in 23 insect orders, revealing a rich diversity of insect corneal nanocoatings. These nanocoatings are categorized into four major morphological patterns and various transitions between them, many, to our knowledge, never described before. Remarkably, this unexpectedly diverse range of the corneal nanostructures replicates the complete set of Turing patterns, thus likely being a result of processes similar to those modeled by Alan Turing in his famous reaction-diffusion system. These findings reveal a beautiful diversity of insect corneal nanostructures and shed light on their molecular origin and evolutionary diversification. They may also be the first-ever biological example of Turing nanopatterns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Language diversity has become greatly endangered in the past centuries owing to processes of language shift from indigenous languages to other languages that are seen as socially and economically more advantageous, resulting in the death or doom of minority languages. In this paper, we define a new language competition model that can describe the historical decline of minority languages in competition with more advantageous languages. We then implement this non-spatial model as an interaction term in a reactiondiffusion system to model the evolution of the two competing languages. We use the results to estimate the speed at which the more advantageous language spreads geographically, resulting in the shrinkage of the area of dominance of the minority language. We compare the results from our model with the observed retreat in the area of influence of the Welsh language in the UK, obtaining a good agreement between the model and the observed data

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use two coupled equations to analyze the space-time dynamics of two interacting languages. Firstly, we introduce a cohabitation model, which is more appropriate for human populations than classical (non-cohabitation) models. Secondly, using numerical simulations we nd the front speed of a new language spreading into a region where another language was previously used. Thirdly, for a special case we derive an analytical formula that makes it possible to check the validity of our numerical simulations. Finally, as an example, we nd that the observed front speed for the spread of the English language into Wales in the period 1961-1981 is consistent with the model predictions. We also nd that the e¤ects of linguistic parameters are much more important than those of parameters related to population dispersal and reproduction. If the initial population densities of both languages are similar, they have no e¤ect on the front speed. We outline the potential of the new model to analyze relationships between language replacement and genetic replacement

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonequilibrium phase transitions occurring in a fast-ionic-conductor model and in a reaction-diffusion Ising model are studied by Monte Carlo finite-size scaling to reveal nonclassical critical behavior; our results are compared with those in related models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The time interval between successive migrations of biological species causes a delay time in the reaction-diffusion equations describing their space-time dynamics. This lowers the predicted speed of the waves of advance, as compared to classical models. It has been shown that this delay-time effect improves the modeling of human range expansions. Here, we demonstrate that it can also be important for other species. We present two new examples where the predictions of the time-delayed and the classical (Fisher) approaches are compared to experimental data. No free or adjustable parameters are used. We show that the importance of the delay effect depends on the dimensionless product of the initial growth rate and the delay time. We argue that the delay effect should be taken into account in the modeling of range expansions for biological species

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The speed of traveling fronts for a two-dimensional model of a delayed reactiondispersal process is derived analytically and from simulations of molecular dynamics. We show that the one-dimensional (1D) and two-dimensional (2D) versions of a given kernel do not yield always the same speed. It is also shown that the speeds of time-delayed fronts may be higher than those predicted by the corresponding non-delayed models. This result is shown for systems with peaked dispersal kernels which lead to ballistic transport

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, a methodology is used for the simultaneous determination of the effective diffusivity and the convective mass transfer coefficient in porous solids, which can be considered as an infinite cylinder during drying. Two models are used for optimization and drying simulation: model 1 (constant volume and diffusivity, with equilibrium boundary condition), and model 2 (constant volume and diffusivity with convective boundary condition). Optimization algorithms based on the inverse method were coupled to the analytical solutions, and these solutions can be adjusted to experimental data of the drying kinetics. An application of optimization methodology was made to describe the drying kinetics of whole bananas, using experimental data available in the literature. The statistical indicators enable to affirm that the solution of diffusion equation with convective boundary condition generates results superior than those with the equilibrium boundary condition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mathematical model for two-dimensional unsteady sonic flow, based on the classical diffusion equation with imaginary coefficient, is presented and discussed. The main purpose is to develop a rigorous formulation in order to bring into light the correspondence between the sonic, supersonic and subsonic panel method theory. Source and doublet integrals are obtained and Laplace transformation demonstrates that, in fact, the source integral is the solution of the doublet integral equation. It is shown that the doublet-only formulation reduces to a Volterra integral equation of the first kind and a numerical method is proposed in order to solve it. To the authors' knowledge this is the first reported solution to the unsteady sonic thin airfoil problem through the use of doublet singularities. Comparisons with the source-only formulation are shown for the problem of a flat plate in combined harmonic heaving and pitching motion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This investigation comprises a comparison of experimental and theoretical dechanneling of MeV protons in copper single crystals. Dechanneling results when an ion's transverse energy increases to the value where the ion can undergo small impact parameter collisions with individual atoms. Depth dependent dechanneling rates were determined as functions of lattice temperature, ion beam energy and crystal axis orientation. Ion beam energies were IMeV and 2MeV,temperatures ranged from 35 K to 280 K and the experiment was carried out along both the (lOa) and <110) axes. Experimental data took the form of aligned and random Rutherford backscattered energy spectra. Dechanneling rates were extracted from these spectra using a single scattering theory that took explicit account of the different stopping powers experienced by channeled and dechanneled ions and also included a correction factor to take into account multiple scattering effects along the ion's trajectory. The assumption of statistical equilibrium and small angle scattering of the channeled ions allows a description of dechanneling in terms of the solution of a diffusion like equation which contains a so called diffusion function. The diffusion function is shown to be related to the increase in average transverse energy. Theoretical treatments of increase in average transverse energy due to collisions of projectiles with channel electrons and thermal perturbations in the lattice potential are reviewed. Using the diffusion equation and the electron density in the channel centre as a fitting parameter dechanneling rates are extracted. Excellent agreement between theory and experiment has been demonstrated. Electron densities determined in the fitting procedure appear to be realistic. The surface parameters show themselves to be good indicators of the quality of the crystal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

On retrouve dans la nature un nombre impressionnant de matériaux semi-transparents tels le marbre, le jade ou la peau, ainsi que plusieurs liquides comme le lait ou les jus. Que ce soit pour le domaine cinématographique ou le divertissement interactif, l'intérêt d'obtenir une image de synthèse de ce type de matériau demeure toujours très important. Bien que plusieurs méthodes arrivent à simuler la diffusion de la lumière de manière convaincante a l'intérieur de matériaux semi-transparents, peu d'entre elles y arrivent de manière interactive. Ce mémoire présente une nouvelle méthode de diffusion de la lumière à l'intérieur d'objets semi-transparents hétérogènes en temps réel. Le coeur de la méthode repose sur une discrétisation du modèle géométrique sous forme de voxels, ceux-ci étant utilisés comme simplification du domaine de diffusion. Notre technique repose sur la résolution de l'équation de diffusion à l'aide de méthodes itératives permettant d'obtenir une simulation rapide et efficace. Notre méthode se démarque principalement par son exécution complètement dynamique ne nécessitant aucun pré-calcul et permettant une déformation complète de la géométrie.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a novel approach to computing the orientation moments and rheological properties of a dilute suspension of spheroids in a simple shear flow at arbitrary Peclct number based on a generalised Langevin equation method. This method differs from the diffusion equation method which is commonly used to model similar systems in that the actual equations of motion for the orientations of the individual particles are used in the computations, instead of a solution of the diffusion equation of the system. It also differs from the method of 'Brownian dynamics simulations' in that the equations used for the simulations are deterministic differential equations even in the presence of noise, and not stochastic differential equations as in Brownian dynamics simulations. One advantage of the present approach over the Fokker-Planck equation formalism is that it employs a common strategy that can be applied across a wide range of shear and diffusion parameters. Also, since deterministic differential equations are easier to simulate than stochastic differential equations, the Langevin equation method presented in this work is more efficient and less computationally intensive than Brownian dynamics simulations.We derive the Langevin equations governing the orientations of the particles in the suspension and evolve a procedure for obtaining the equation of motion for any orientation moment. A computational technique is described for simulating the orientation moments dynamically from a set of time-averaged Langevin equations, which can be used to obtain the moments when the governing equations are harder to solve analytically. The results obtained using this method are in good agreement with those available in the literature.The above computational method is also used to investigate the effect of rotational Brownian motion on the rheology of the suspension under the action of an external force field. The force field is assumed to be either constant or periodic. In the case of con- I stant external fields earlier results in the literature are reproduced, while for the case of periodic forcing certain parametric regimes corresponding to weak Brownian diffusion are identified where the rheological parameters evolve chaotically and settle onto a low dimensional attractor. The response of the system to variations in the magnitude and orientation of the force field and strength of diffusion is also analyzed through numerical experiments. It is also demonstrated that the aperiodic behaviour exhibited by the system could not have been picked up by the diffusion equation approach as presently used in the literature.The main contributions of this work include the preparation of the basic framework for applying the Langevin method to standard flow problems, quantification of rotary Brownian effects by using the new method, the paired-moment scheme for computing the moments and its use in solving an otherwise intractable problem especially in the limit of small Brownian motion where the problem becomes singular, and a demonstration of how systems governed by a Fokker-Planck equation can be explored for possible chaotic behaviour.