406 resultados para Ravi
Resumo:
When people drink water having a fluoride (F-) concentration >1-1.5 mg/L for a long period of time, various ailments that are collectively referred to as fluorosis occur. Based on the design of Thomas (http://www.planetkerala.org), an inclined basin-type solar still containing sand and water has been used at Bangalore for defluoridation. For water samples having a fluoride concentration in the range 5-20 mg/L, the fluoride concentration in the distillate was usually <1.5 mg/L. During the periods October 2006 May 2007 and October 2007 May 2008, the volume of distillate showed a significant diurnal variation, ranging from 0.3 to 4.0 L/m(2).day. Based on the figures for 2006, the cost of the still was about Rs. 850 (US$16) for collector areas in the range 0.50-0.57 m(2). The occurrence of F- in the distillate merits further investigation. Overall, the still effectively removes F-, but a large area of the collector, in the range 2.5-25 m(2), is needed to produce about 10 L of distilled water for cooking and drinking. Rainwater falling on the upper surface of the still was collected, and its fluoride concentration was found to be below the desirable limit of 1 mg/L. Hence it can also be used for cooking and drinking.
Resumo:
We describe the fabrication of silver nanotriangle array using angle resolved nanosphere lithography and utilizing the same for enhancing fluorescence. The well established nanosphere lithography is modified by changing the angle of deposition between the nanosphere mask and the beam of silver being deposited resulting in nanotriangles of varying surface area and density. The 470 nm plasmon resonance wavelength of the substrate was determined using minimum reflectivity method which closely matches with excitation wavelength of the fluorophore. Ten times enhancement in fluorescence emission intensity is obtained from fluorescein isothiocyanate coated on top of silver nanotriangle array separated by a spacer layer of poly vinyl alcohol as compared to glass. The enhanced fluorescence emission is attributed to the increase in local field enhancement.
Resumo:
The failure of atmospheric general circulation models (AGCMs) forced by prescribed SST to simulate and predict the interannual variability of Indian/Asian monsoon has been widely attributed to their inability to reproduce the actual sea surface temperature (SST)-rainfall relationship in the warm Indo-Pacific oceans. This assessment is based on a comparison of the observed and simulated correlation between the rainfall and local SST. However, the observed SSTconvection/rainfall relationship is nonlinear and for this a linear measure such as the correlation is not an appropriate measure. We show that the SST-rainfall relationship simulated by atmospheric and coupled general circulation models in IPCC AR4 is nonlinear, as observed, and realistic over the tropical West Pacific (WPO) and the Indian Ocean (IO). The SST-rainfall pattern simulated by the coupled versions of these models is rather similar to that from the corresponding atmospheric one, except for a shift of the entire pattern to colder/warmer SSTs when there is a cold/warm bias in the coupled version.
Resumo:
The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon(1-3). With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses(4-9). As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world's major tropical regions. Our analysis reveals great variation in reserve `health': about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.
Resumo:
Nb is one of the common refractory elements added in Ni, Co and Fe based superalloys. This lead to the formation of brittle topological close packed (tcp) mu phase, which is deleterious to the structure. It mainly grows by interdiffusion and in the present article, the interdiffusion process in different Nb-X (X=Ni, Co, Fe) systems is discussed. The activation energy for interdiffusion is lower in the Co-Nb system (173 kJ/mol) than Fe-Nb system (233 kJ/mol), which is again lower than the value found in the Ni-Nb system (319.7 kJ/mol). The mole fraction of Nb in this phase is less than Fe or Co at stoichiometric compositions in the Nb-Fe (that is Fe7Nb6) and Nb-Co (that is Co7Nb6) systems. On the other hand, the mole fraction of Nb is higher than Ni in the same phase (Ni6Nb2) in Ni-Nb system. However, in all the phases, Nb has lower diffusion rate. Possible diffusion mechanism in this phase is discussed with respect to the crystal structure.
Resumo:
Computational grids with multiple batch systems (batch grids) can be powerful infrastructures for executing long-running multi-component parallel applications. In this paper, we evaluate the potential improvements in throughput of long-running multi-component applications when the different components of the applications are executed on multiple batch systems of batch grids. We compare the multiple batch executions with executions of the components on a single batch system without increasing the number of processors used for executions. We perform our analysis with a foremost long-running multi-component application for climate modeling, the Community Climate System Model (CCSM). We have built a robust simulator that models the characteristics of both the multi-component application and the batch systems. By conducting large number of simulations with different workload characteristics and queuing policies of the systems, processor allocations to components of the application, distributions of the components to the batch systems and inter-cluster bandwidths, we show that multiple batch executions lead to 55% average increase in throughput over single batch executions for long-running CCSM. We also conducted real experiments with a practical middleware infrastructure and showed that multi-site executions lead to effective utilization of batch systems for executions of CCSM and give higher simulation throughput than single-site executions. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
Aerosol forcing remains a dominant uncertainty in climate studies. The impact of aerosol direct radiative forcing on Indian monsoon is extremely complex and is strongly dependent on the model, aerosol distribution and characteristics specified in the model, modelling strategy employed as well as on spatial and temporal scales. The present study investigates (i) the aerosol direct radiative forcing impact on mean Indian summer monsoon when a combination of quasi-realistic mean annual cycles of scattering and absorbing aerosols derived from an aerosol transport model constrained with satellite observed Aerosol Optical Depth (AOD) is prescribed, (ii) the dominant feedback mechanism behind the simulated impact of all-aerosol direct radiative forcing on monsoon and (iii) the relative impacts of absorbing and scattering aerosols on mean Indian summer monsoon. We have used CAM3, an atmospheric GCM (AGCM) that has a comprehensive treatment of the aerosol-radiation interaction. This AGCM has been used to perform climate simulations with three different representations of aerosol direct radiative forcing due to the total, scattering aerosols and black carbon aerosols. We have also conducted experiments without any aerosol forcing. Aerosol direct impact due to scattering aerosols causes significant reduction in summer monsoon precipitation over India with a tendency for southward shift of Tropical Convergence Zones (TCZs) over the Indian region. Aerosol forcing reduces surface solar absorption over the primary rainbelt region of India and reduces the surface and lower tropospheric temperatures. Concurrent warming of the lower atmosphere over the warm oceanic region in the south reduces the land-ocean temperature contrast and weakens the monsoon overturning circulation and the advection of moisture into the landmass. This increases atmospheric convective stability, and decreases convection, clouds, precipitation and associated latent heat release. Our analysis reveals a defining negative moisture-advection feedback that acts as an internal damping mechanism spinning down the regional hydrological cycle and leading to significant circulation changes in response to external radiative forcing perturbations. When total aerosol loading (both absorbing and scattering aerosols) is prescribed, dust and black carbon aerosols are found to cause significant atmospheric heating over the monsoon region but the aerosol-induced weakening of meridional lower tropospheric temperature gradient (leading to weaker summer monsoon rainfall) more than offsets the increase in summer-time rainfall resulting from the atmospheric heating effect of absorbing aerosols, leading to a net decrease of summer monsoon rainfall. Further, we have carried out climate simulations with globally constant AODs and also with the constant AODs over the extended Indian region replaced by realistic AODs. Regional aerosol radiative forcing perturbations over the Indian region is found to have impact not only over the region of loading but over remote tropical regions as well. This warrants the need to prescribe realistic aerosol properties in strategic regions such as India in order to accurately assess the aerosol impact.
Resumo:
Real-time image reconstruction is essential for improving the temporal resolution of fluorescence microscopy. A number of unavoidable processes such as, optical aberration, noise and scattering degrade image quality, thereby making image reconstruction an ill-posed problem. Maximum likelihood is an attractive technique for data reconstruction especially when the problem is ill-posed. Iterative nature of the maximum likelihood technique eludes real-time imaging. Here we propose and demonstrate a compute unified device architecture (CUDA) based fast computing engine for real-time 3D fluorescence imaging. A maximum performance boost of 210x is reported. Easy availability of powerful computing engines is a boon and may accelerate to realize real-time 3D fluorescence imaging. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.4754604]
Resumo:
In this work the field emission studies of a new type of field emitter, zinc oxide (ZnO) core/graphitic (g-C) shell nanowires are presented. The nanowires are synthesized by chemical vapor deposition of zinc acetate at 1300 degrees C Scanning and transmission electron microscopy characterization confirm high aspect ratio and novel core-shell morphology of the nanowires. Raman spectrum of the nanowires mat represents the characteristic Raman modes from g-C shell as well as from the ZnO core. A low turn on field of 2.75 V/mu m and a high current density of 1.0 mA/cm(2) at 4.5 V/mu m for ZnO/g-C nanowires ensure the superior field emission behavior compared to the bare ZnO nanowires. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience. An automated method for optimal selection of regularization parameter that is based on regularized minimal residual method (MRM) is proposed and is compared with the traditional generalized cross-validation method. The results obtained using numerical and gelatin phantom data indicate that the MRM-based method is capable of providing the optimal regularization parameter. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). DOI: 10.1117/1.JBO.17.10.106015]
Resumo:
Interdiffusion study is conducted in the Au-Cu system, which has complete solid solution in the higher temperature range and ordered phases in the lower temperature range. First experiments are conducted at higher temperatures, where atoms can diffuse randomly. Higher values of interdiffusion coefficients are found in the range of 40-50 at.% Cu. This trend is explained with the help of thermodynamic factor and possible concentration of vacancies. Following an experiment is conducted at 623 K (350 degrees C), where the ordered phases are grown. The interdiffusion coefficients at this temperature are compared after extrapolating the data calculated at higher temperatures.
Resumo:
Growth mechanism of phases and atomic mechanism of diffusion are discussed in the Pd-Sn system. The Kirkendall marker plane location indicates that the PdSn4 phase grows because of diffusion of Sn. Atomic arrangement in the crystal indicates that Sn can diffuse through its own sublattice but Pd cannot diffuse unless antisites are present. The negligible diffusion of Pd indicates the absence of Pd antisites. The activation energy value indicates that the contribution from grain boundary diffusion cannot be neglected although experiments were conducted in the homologous temperature range of 0.7-0.79.
Resumo:
This study uses precipitation estimates from the Tropical Rainfall Measuring Mission to quantify the spatial and temporal scales of northward propagation of convection over the Indian monsoon region during boreal summer. Propagating modes of convective systems in the intraseasonal time scales such as the Madden-Julian oscillation can interact with the intertropical convergence zone and bring active and break spells of the Indian summer monsoon. Wavelet analysis was used to quantify the spatial extent (scale) and center of these propagating convective bands, as well as the time period associated with different spatial scales. Results presented here suggest that during a good monsoon year the spatial scale of this oscillation is about 30 degrees centered around 10 degrees N. During weak monsoon years, the scale of propagation decreases and the center shifts farther south closer to the equator. A strong linear relationship is obtained between the center/scale of convective wave bands and intensity of monsoon precipitation over Indian land on the interannual time scale. Moreover, the spatial scale and its center during the break monsoon were found to be similar to an overall weak monsoon year. Based on this analysis, a new index is proposed to quantify the spatial scales associated with propagating convective bands. This automated wavelet-based technique developed here can be used to study meridional propagation of convection in a large volume of datasets from observations and model simulations. The information so obtained can be related to the interannual and intraseasonal variation of Indian monsoon precipitation.
Resumo:
In submitted research; nanocrystalline powders having elements Ni0.5Cu0.25Zn0.25Fe2 xInxO4 with varied amounts of indium ( x = 0.0, 0.1, 0.2, 0.3 and 0.4) were grown-up by modified citrate to nitrate alchemy. The realism of single phase cubic spinel creation of the synthesized ferrite samples was studied by the DTA-TGA, XRD, SEM, EDX, FT-IR, VSM and dielectric measurements. SEM was applied to inspect the morphological variations and EDX was used to determine the compositional mass ratios. The studies on the dielectric constant (epsilon'), dielectric loss (epsilon `'), loss tangent (tan delta), ac conductivity (sigma(ac)), resistive and reactive parts of the impedance analysis (Z' and Z `') at room temperature were also carried out. The saturation magnetizations (Ms) were determined using the vibrating sample magnetometer (VSM). Ms. decreased with the increase In3+ doping content, as Fe3+ of 5(mu B) ions are replaced by In3+ of 5 mu(B) ions. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
Diffusion parameters such as the interdiffusion coefficients and the ratio of the tracer diffusion coefficients are calculated in the Co2Ta Laves phase. The activation energy for the interdiffusion coefficients is calculated as 186 +/- 29 kJ/mol. The ratio of tracer diffusion coefficients indicates that Co has higher diffusion rate than that of Ta. This is explained with the help of possible point defects and the crystal structure of the phase: The phase boundary compositions measured in this study is different from the compositions published previously. (C) 2012 Elsevier Ltd. All rights reserved.