920 resultados para Ras association domain family protein 1A
Resumo:
RAS gene-encoded p21 protein has been found to increase in vitro phosphorylation of JUN via its kinase, JUN N-terminal kinase (JNK). This effect is mediated by increased phosphorylation of JNK in the presence of wild-type and oncogenic (Val-12) p21 protein in a dose-dependent manner. Oncogenic p21 protein is more potent in mediating this effect than its normal counterpart. Both normal and oncogenic p21 proteins bind to purified JNK and to JNK that is present in cell extracts from transformed fibroblasts and melanoma cells. Oncogenic and normal p21 proteins have also been found to bind to bacterially expressed JUN protein. This binding is dose dependent, enhanced by the presence of GTP, and depends on the presence of the first 89 amino acids of JUN (the delta domain), as it does not occur with v-jun. While the ability of both normal and oncogenic p21 proteins to bind JNK is strongly inhibited by a p21 peptide corresponding to aa 96-110, and more weakly inhibited by the p21 peptide corresponding to aa 115-126, p21-JUN interaction is inhibited by peptides corresponding to aa 96-110 and, to a lesser degree, by peptides corresponding to aa 35-47. The results suggest that the p21 protein interacts specifically with both JNK and JUN proteins.
Resumo:
The interleukin 2 receptor (IL-2R) consists of three subunits, the IL-2R alpha, IL-2R beta c, and IL-2R gamma c chains. Two Janus family protein tyrosine kinases (PTKs), Jak1 and Jak3, were shown to associate with IL-2R beta c and IL-2R gamma c, respectively, and their PTK activities are increased after IL-2 stimulation. A Jak3 mutant with truncation of the C-terminal PTK domain lacks its intrinsic kinase activity but can still associate with IL-2R gamma c. In a hematopoietic cell line, F7, that responds to either IL-2 or IL-3, overexpression of this Jak3 mutant results in selective inhibition of the IL-2-induced activation of Jak1/Jak3 PTKs and of cell proliferation. Of the three target nuclear protooncogenes of the IL-2 signaling, c-fos and c-myc genes, but not the bcl-2 gene, were found to be impaired. On the other hand, overexpression of the dominant negative form of the IL-2R gamma c chain, which lacks most of its cytoplasmic domain, in F7 cells resulted in the inhibition of all three protooncogenes. These results provide a further molecular basis for the critical role of Jak3 in IL-2 signaling and also suggest a Jak PTK-independent signaling pathway(s) for the bcl-2 gene induction by IL-2R.
Resumo:
The involvement of A to I RNA editing in antiviral responses was first indicated by the observation of genomic hyper-mutation for several RNA viruses in the course of persistent infections. However, in only a few cases an antiviral role was ever demonstrated and surprisingly, it turns out that ADARs - the RNA editing enzymes - may have a prominent pro-viral role through the modulation/down-regulation of the interferon response. A key role in this regulatory function of RNA editing is played by ADAR1, an interferon inducible RNA editing enzyme. A distinguishing feature of ADAR1, when compared with other ADARs, is the presence of a Z-DNA binding domain, Zalpha. Since the initial discovery of the specific and high affinity binding of Zalpha to CpG repeats in a left-handed helical conformation, other proteins, all related to the interferon response pathway, were shown to have similar domains throughout the vertebrate lineage. What is the biological function of this domain family remains unclear but a significant body of work provides pieces of a puzzle that points to an important role of Zalpha domains in the recognition of foreign nucleic acids in the cytoplasm by the innate immune system. Here we will provide an overview of our knowledge on ADAR1 function in interferon response with emphasis on Zalpha domains.
Resumo:
"November 1988."
Resumo:
The Epstein - Barr nuclear antigens (EBNA), EBNA-3, -4 and - 6, have previously been shown to act as transcriptional regulators, however, this study identifies another function for these proteins, disruption of the G2/M checkpoint. Lymphoblastoid cell lines (LCLs) treated with a G2/M initiating drug azelaic bishydroxamine ( ABHA) did not show a G2/M checkpoint response, but rather they display an increase in cell death, a characteristic of sensitivity to the cytotoxic effects of the drug. Cell cycle analysis demonstrated that the individual expression of EBNA-3, - 4 or - 6 are capable of disrupting the G2/M checkpoint response induced by ABHA resulting in increased toxicity, whereas EBNA-2, and - 5 were not. EBNA-3 gene family protein expression also disrupted the G2/M checkpoint initiated in response to the genotoxin etoposide and the S phase inhibitor hydroxyurea. The G2 arrest in response to these drugs were sensitive to caffeine, suggesting that ATM/ATR signalling in these checkpoint responses may be blocked by the EBNA-3 family proteins. The function of EBNA-3, - 4 and - 6 proteins appears to be more complex than anticipated and these data suggest a role for these proteins in disrupting the host cell cycle machinery.
Resumo:
Structural similarity among proteins is reflected in the distribution of hydropathicity along the amino acids in the protein sequence. Similarities in the hydropathy distributions are obvious for homologous proteins within a protein family. They also were observed for proteins with related structures, even when sequence similarities were undetectable. Here we present a novel method that employs the hydropathy distribution in proteins for identification of (sub)families in a set of (homologous) proteins. We represent proteins as points in a generalized hydropathy space, represented by vectors of specifically defined features. The features are derived from hydropathy of the individual amino acids. Projection of this space onto principal axes reveals groups of proteins with related hydropathy distributions. The groups identified correspond well to families of structurally and functionally related proteins. We found that this method accurately identifies protein families in a set of proteins, or subfamilies in a set of homologous proteins. Our results show that protein families can be identified by the analysis of hydropathy distribution, without the need for sequence alignment. (C) 2005 Wiley-Liss, Inc.
Resumo:
BACKGROUND: Alix/Bro1p family proteins have recently been identified as important components of multivesicular endosomes (MVEs) and are involved in the sorting of endocytosed integral membrane proteins, interacting with components of the ESCRT complex, the unconventional phospholipid LBPA, and other known endocytosis regulators. During infection, Alix can be co-opted by enveloped retroviruses, including HIV, providing an important function during virus budding from the plasma membrane. In addition, Alix is associated with the actin cytoskeleton and might regulate cytoskeletal dynamics. RESULTS: Here we demonstrate a novel physical interaction between the only apparent Alix/Bro1p family protein in C. elegans, ALX-1, and a key regulator of receptor recycling from endosomes to the plasma membrane, called RME-1. The analysis of alx-1 mutants indicates that ALX-1 is required for the endocytic recycling of specific basolateral cargo in the C. elegans intestine, a pathway previously defined by the analysis of rme-1 mutants. The expression of truncated human Alix in HeLa cells disrupts the recycling of major histocompatibility complex class I, a known Ehd1/RME-1-dependent transport step, suggesting the phylogenetic conservation of this function. We show that the interaction of ALX-1 with RME-1 in C. elegans, mediated by RME-1/YPSL and ALX-1/NPF motifs, is required for this recycling process. In the C. elegans intestine, ALX-1 localizes to both recycling endosomes and MVEs, but the ALX-1/RME-1 interaction appears to be dispensable for ALX-1 function in MVEs and/or late endosomes. CONCLUSIONS: This work provides the first demonstration of a requirement for an Alix/Bro1p family member in the endocytic recycling pathway in association with the recycling regulator RME-1.
Resumo:
Merlin has broad tumor-suppressor functions as its mutations have been identified in multiple benign tumors and malignant cancers. In all schwannomas, the majority of meningiomas and 1/3 of ependymomas Merlin loss is causative. In neurofibromatosis type 2, a dominantly inherited tumor disease because of the loss of Merlin, patients suffer from multiple nervous system tumors and die on average around age 40. Chemotherapy is not effective and tumor localization and multiplicity make surgery and radiosurgery challenging and morbidity is often considerable. Thus, a new therapeutic approach is needed for these tumors. Using a primary human in vitro model for Merlin-deficient tumors, we report that the Ras/Raf/mitogen-activated protein, extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) scaffold, kinase suppressor of Ras 1 (KSR1), has a vital role in promoting schwannomas development. We show that KSR1 overexpression is involved in many pathological phenotypes caused by Merlin loss, namely multipolar morphology, enhanced cell-matrix adhesion, focal adhesion and, most importantly, increased proliferation and survival. Our data demonstrate that KSR1 has a wider role than MEK1/2 in the development of schwannomas because adhesion is more dependent on KSR1 than MEK1/2. Immunoprecipitation analysis reveals that KSR1 is a novel binding partner of Merlin, which suppresses KSR1's function by inhibiting the binding between KSR1 and c-Raf. Our proteomic analysis also demonstrates that KSR1 interacts with several Merlin downstream effectors, including E3 ubiquitin ligase CRL4DCAF1. Further functional studies suggests that KSR1 and DCAF1 may co-operate to regulate schwannomas formation. Taken together, these findings suggest that KSR1 serves as a potential therapeutic target for Merlin-deficient tumors.
Resumo:
Lactobacillus reuteri BR11 possesses an abundant cystine uptake (Cyu) ABC-transporter that was previously found to be involved in a novel mechanism of oxidative defence mediated by cystine. The current study aimed to elucidate this mechanism with a focus on the role of the co-transcribed cystathionine ã-lyase (Cgl). Growth studies of wild-type L. reuteri BR11 and mutants inactivated in cgl and the cystine-binding protein encoding gene cyuC showed that in contrast to the Cyu transporter, whose inactivation led to growth arrest in aerated cultures, Cgl is not crucial for oxidative defence. However, the role of Cgl in oxidative defence became apparent in the presence of severe oxidative damage and cysteine deprivation. Cysteine was found to be protective against oxidative stress, and the action of Cgl in both cysteine biosynthesis and degradation poses a seemingly futile pathway that deprives the intracellular cysteine pool. To further characterise the relationship between Cgl activity and cysteine and their roles in oxidative defence, enzymatic assays were performed on purified Cgl, and intracellular concentrations of cysteine, cystathionine and methionine were determined. Cgl was highly active towards cystine and cystathionine and less active towards cysteine in vitro, suggesting the main function of Cgl to be cysteine biosynthesis. Cysteine was found at high concentrations in the cell, but the levels were not significantly affected by inactivation of cgl or growth under aerobic conditions. It was concluded that both anabolic and catabolic activities of Cgl towards cysteine contribute to oxidative defence, the former by maintaining an intracellular reservoir of thiol analogous to glutathione, and the latter by producing H2S which is readily secreted, thus creating a reducing extracellular environment. The significance of the Cyu transporter to the physiology of L. reuteri BR11 prompted a phylogenetic study to determine its presence in bacteria. Orthologs of the Cyu transporter that are closest matches to the Cyu transporter are only limited to several species of Lactobacillus and Leuconostoc. Outside the Lactobacillales order, the closest matching orthologs belong to Proteobacteria, and there are more orthologs in Proteobacteria than non-Lactobacillales Firmicutes, suggesting that the Cyu transporter locus was present in the ancestor of the Proteobacteria and Firmicutes, and over evolutionary time has been lost or diverged in many Firmicutes. The clustering of the Cyu transporter locus with a gene encoding a Cgl family protein is even rarer. It was only found in L. reuteri, Lactobacillus vaginalis, Weissella paramesenteroides, the Lactobacillus casei group, and several Campylobacter sp. An accompanying phylogenetic study of L. reuteri BR11 using multi-locus sequence analysis showed that L. reuteri BR11 had diverged from more than 100 strains of L. reuteri isolated from various hosts and geographical locations. However, comparison with other Lactobacillus species supported the current classification of BR11 as L. reuteri. The most closely related species to L. reuteri is L. vaginalis or Lactobacillus antri, depending on the housekeeping gene used for analysis. The close evolutionary relationship of L. vaginalis to L. reuteri and the high degree of sequence identity between the cgl-cyuABC loci in both species suggest that the Cyu system is highly likely to perform similar functions in L. vaginalis. In search of other genes that function in oxidative defence, a number of mutants which were inactivated in genes that confer increased resistance to oxidative stress in other bacteria were constructed. The genes targeted were ahpC (peroxidase component of the alkyl hydroperoxide reductase system), tpx (thiol peroxidase), osmC (osmotically induced protein C), mntH (Mn2+/Fe2+ transporter), gshA (ã-glutamylcysteine synthetase) and msrA (methionine sulfoxide reductase). The ahpC and mntH mutants had slightly lower minimum inhibitory concentrations of organic peroxides, suggesting these genes might be involved in resistance to organic peroxides in L. reuteri. However, none of the mutants exhibited growth defects in aerated cultures, in stark contrast to the cyuC mutant. This may be due to compensatory functions of other genes, a hypothesis which cannot be tested until a robust protocol for constructing markerless multiple gene deletion mutants in L. reuteri is developed. These results highlight the importance of the Cyu transporter in oxidative defence and provide a foundation for extending the research of this system in other bacteria.
Resumo:
This paper reviews the diversity in parenting values and practices amongst Aboriginal peoples and Torres Strait Islanders. Firstly, issues arising from the historical traumatic disruption of families’ attachments are discussed, Then the contribution Indigenous parenting makes to the development of healthy and vulnerable individuals becomes the central focus. Family therapists can draw from a broad understanding of the diversity of parenting values and practices in the context of a strength-based approach.
Resumo:
The double-stranded conformation of cellular DNA is a central aspect of DNA stabilisation and protection. The helix preserves the genetic code against chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. However, there are various instances where single-stranded DNA is exposed, such as during replication or transcription, in the synthesis of chromosome ends, and following DNA damage. In these instances, single-stranded DNA binding proteins are essential for the sequestration and processing of single-stranded DNA. In order to bind single-stranded DNA, these proteins utilise a characteristic and evolutionary conserved single-stranded DNA-binding domain, the oligonucleotide/oligosaccharide-binding (OB)-fold. In the current review we discuss a subset of these proteins involved in the direct maintenance of genomic stability, an important cellular process in the conservation of cellular viability and prevention of malignant transformation. We discuss the central roles of single-stranded DNA binding proteins from the OB-fold domain family in DNA replication, the restart of stalled replication forks, DNA damage repair, cell cycle-checkpoint activation, and telomere maintenance.
Resumo:
Background: Despite increasing diversity in pathways to adulthood, choices available to young people are influenced by environmental, familial and individual factors, namely access to socioeconomic resources, family support and mental and physical health status. Young people from families with higher socioeconomic position (SEP) are more likely to pursue tertiary education and delay entry to adulthood, whereas those from low socioeconomic backgrounds are less likely to attain higher education or training, and more likely to partner and become parents early. The first group are commonly termed ‘emerging adults’ and the latter group ‘early starters’. Mental health disorders during this transition can seriously disrupt psychological, social and academic development as well as employment prospects. Depression, anxiety and most substance use disorders have early onset during adolescence and early adulthood with approximately three quarters of lifetime psychiatric disorders having emerged by 24 years of age. Aims: This thesis aimed to explore the relationships between mental health, sociodemographic factors and family functioning during the transition to adulthood. Four areas were investigated: 1) The key differences between emerging adults and ‘early starters’, were examined and focused on a series of social, economic, and demographic factors as well as DSM-IV diagnoses; 2) Methodological issues associated with the measurement of depression and anxiety in young adults were explored by comparing a quantitative measure of symptoms of anxiety and depression (Achenbach’s YSR and YASR internalising scales) with DSM-IV diagnosed depression and anxiety. 3) The association between family SEP and DSM-IV depression and anxiety was examined in relation to the different pathways to adulthood. 4) Finally, the association between pregnancy loss, abortion and miscarriage, and DSM-IV diagnoses of common psychiatric disorders was assessed in young women who reported early parenting, experiencing a pregnancy loss, or who had never been pregnant. Methods: Data were taken from the Mater University Study of Pregnancy (MUSP), a large birth cohort started in 1981 in Brisbane, Australia. 7223 mothers and their children were assessed five times, at 6 months, 5, 14 and 21 years after birth. Over 3700 young adults, aged 18 to 23 years, were interviewed at the 21-year phase. Respondents completed an extensive series of self-reported questionnaires and a computerised structured psychiatric interview. Three outcomes were assessed at the 21-year phase. Mental health disorders diagnosed by a computerised structured psychiatric interview (CIDI-Auto), the prevalence of DSM-IV depression, anxiety and substance use disorders within the previous 12-month, during the transition (between ages of 18 and 23 years) or lifetime were examined. The primary outcome “current stage in the transition to adulthood” was developed using a measure conceptually constructed from the literature. The measure was based on important demographic markers, and these defined four independent groups: emerging adults (single with no children and living with parents), and three categories of ‘early starter’, singles (with no children or partner, living independently), those with a partner (married or cohabitating but without children) and parents. Early pregnancy loss was assessed using a measure that also defined four independent groups and was based on pregnancy outcomes in the young women This categorised the young women into those who were never pregnant, women who gave birth to a live child, and women who reported some form of pregnancy loss, either an abortion or a spontaneous miscarriage. A series of analyses were undertaken to test the study aims. Potential confounding and mediating factors were prospectively measured between the child’s birth and the 21-year phase. Binomial and multinomial logistic regression was used to estimate the risk of relevant outcomes, and the associations were reported as odds ratios (OR) and 95% confidence intervals (95%CI). Key findings: The thesis makes a number of important contributions to our understanding of the transition to adulthood, particularly in relation to the mental health consequences associated with different pathways. Firstly, findings from the thesis clearly showed that young people who parented or partnered early fared worse across most of the economic and social factors as well as the common mental disorders when compared to emerging adults. That is, young people who became early parents were also more likely to experience recent anxiety (OR=2.0, 95%CI 1.5-2.8) and depression (OR=1.7, 95%CI 1.1-2.7) than were emerging adults after taking into account a range of confounding factors. Singles and those partnering early also had higher rates of lifetime anxiety and depression than emerging adults. Young people who partnered early, but were without children, had decreased odds of recent depression; this may be due to the protective effect of early marriage against depression. It was also found that young people who form families early had an increased risk of cigarette smoking (parents OR=3.7, 95%CI 2.9-4.8) compared to emerging adults, but not heavy alcohol (parents OR=0.4, 95%CI 0.3-0.6) or recent illicit drug use. The high rates of cigarette smoking and tobacco use disorders in ‘early starters’ were explained by common risk factors related to early adversity and lower SEP. Having a child and early marriage may well function as a ‘turning point’ for some young people, it is not clear whether this is due to a conscious decision to disengage from a previous ‘substance using’ lifestyle or simply that they no longer have the time to devote to such activities because of child caring. In relation to the methodological issues associated with assessing common mental disorders in young adults, it was found that although the Achenbach empirical internalising scales successfully predicted both later DSM-IV depression (YSR OR=2.3, 95%CI 1.7-3.1) and concurrently diagnosed depression (YASR OR=6.9, 95%CI 5.0- 9.5) and anxiety (YASR OR=5.1, 95%CI 3.8- 6.7), the scales discriminated poorly between young people with or without DSM-IV diagnosed mood disorder. Sensitivity values (the proportion of true positives) for the internalising scales were surprisingly low. Only a third of young people with current DSM-IV depression (range for each of the scales was between 34% to 42%) were correctly identified as cases by the YASR internalising scales, and only a quarter with current anxiety disorder (range of 23% to 31%) were correctly identified. Also, use of the DSM-oriented scales increased sensitivity only marginally (for depression between 2-8%, and anxiety between 2-6%) above the standard Achenbach scales. This is despite the fact that the DSM-oriented scales were originally developed to overcome the poor prediction of DSM-IV diagnoses by the Achenbach scales. The internalising scales, both standard and DSM-oriented, were much more effective at identifying young people with comorbid depression and anxiety, with OR’s 10.1 to 21.7 depending on the internalising scale used. SEP is an important predictor of both an early transition to adulthood and the experience of anxiety during that time Family income during adolescence was a strong predictor of early parenting and partnering before age 24 but not early independent living. Compared to families in the upper quintile, young people from families with low income were nearly twice as likely to live with a partner and four times more likely to become parents (OR ranged from 2.6 to 4.0). This association remained after adjusting for current employment and education level. Children raised in low income families were 30% more likely to have an anxiety disorder (OR=1.3, 95%CI 0.9-1.9), but not depression, as young adults when compared to children from wealthier families. Emerging adults and ‘early starters’ from low income families did not differ in their likelihood of having a later anxiety disorder. Young women reporting a pregnancy loss had nearly three times the odds of experiencing a lifetime illicit drug disorder (excluding cannabis) [abortion OR=3.6, 95%CI 2.0-6.7 and miscarriage OR=2.6, 95%CI 1.2-5.4]. Abortion was associated with alcohol use disorder (OR=2.1, 95%CI 1.3- 3.5) and 12-month depression (OR=1.9, 95%CI 1.1- 3.1). These finding suggest that the association identified by Fergusson et al between abortion and later psychiatric disorders in young women may be due to pregnancy loss and not to abortion, per se. Conclusion: Findings from this thesis support the view that young people who parent or partner early have a greater burden of depression and anxiety when compared to emerging adults. As well, young women experiencing pregnancy loss, from either abortion or miscarriage, are more likely to experience depression and anxiety than are those who give birth to a live infant or who have never been pregnant. Depression, anxiety and substance use disorders often go unrecognised and untreated in young people; this is especially true in young people from lower SEP. Early identification of these common mental health disorders is important, as depression and anxiety experienced during the transition to adulthood have been found to seriously disrupt an individual’s social, educational and economic prospects in later life.
Resumo:
The goal of improving systemic treatment of breast cancers is to evolve from treating every patient with non-specific cytotoxic chemotherapy/hormonal therapy, to a more individually-tailored direct treatment. Although anatomic staging and histological grade are important prognostic factors, they often fail to predict the clinical course of this disease. This study aimed to develop a gene expression profile associated with breast cancers of differing grades. We extracted mRNA from FFPE archival breast IDC tissue samples (Grades I–III), including benign tumours. Affymetrix GeneChip� Human Genome U133 Plus 2.0 Arrays were used to determine gene expression profiles and validated by Q-PCR. IHC was used to detect the AXIN2 protein in all tissues. From the array data, an independent group t-test revealed that 178 genes were significantly (P B 0.01) differentially expressed between three grades of malignant breast tumours when compared to benign tissues. From these results, eight genes were significantly differentially expressed in more than one comparison group and are involved in processes implicated in breast cancer development and/or progression. The two most implicated candidates genes were CLD10 and ESPTI1 as their gene expression profile from the microarray analysis was replicated in Q-PCR analyses of the original tumour samples as well as in an extended population. The IHC revealed a significant association between AXIN2 protein expression and ER status. It is readily acknowledged and established that significant differences exist in gene expression between different cancer grades. Expansion of this approach may lead to an improved ability to discriminate between cancer grade and other pathological factors.
Resumo:
The insulin-receptor substrate family plays important roles in cellular growth, signaling, and survival. Two new members of this family have recently been isolated: IRS5/Dok4 and IRS6/Dok5. This study examines the expression of IRS5/DOK4 in a panel of lung cancer cell lines and tumor specimens. The results demonstrate that expression of IRS5/DOK4 is frequently altered with both elevated and decreased expression in non-small-cell lung cancer (NSCLC) tumor specimens. The altered expression of IRS5/DOK4 observed in tumor samples is not due to aberrant methylation. In vitro cell culture studies demonstrate that treatment of NSCLC cell lines with the histone deacetylase inhibitor trichostatin A (TSA) upregulates IRS5/DOK4. This finding indicates that expression is regulated epigenetically at the level of chromatin remodeling. Chromatin immunoprecipitation experiments confirm that the IRS5/DOK4 promoter has enhanced histone hyperacetylation following treatments with TSA. Finally, hypoxia was demonstrated to downregulate IRS5/DOK4 expression. This expression was restored by TSA. The clinical relevance of altered IRS5/DOK4 expression in NSCLC requires fur ther evaluation.