926 resultados para Random imputation
Resumo:
We present a low-complexity algorithm based on reactive tabu search (RTS) for near maximum likelihood (ML) detection in large-MIMO systems. The conventional RTS algorithm achieves near-ML performance for 4-QAM in large-MIMO systems. But its performance for higher-order QAM is far from ML performance. Here, we propose a random-restart RTS (R3TS) algorithm which achieves significantly better bit error rate (BER) performance compared to that of the conventional RTS algorithm in higher-order QAM. The key idea is to run multiple tabu searches, each search starting with a random initial vector and choosing the best among the resulting solution vectors. A criterion to limit the number of searches is also proposed. Computer simulations show that the R3TS algorithm achieves almost the ML performance in 16 x 16 V-BLAST MIMO system with 16-QAM and 64-QAM at significantly less complexities than the sphere decoder. Also, in a 32 x 32 V-BLAST MIMO system, the R3TS performs close to ML lower bound within 1.6 dB for 16-QAM (128 bps/Hz), and within 2.4 dB for 64-QAM (192 bps/Hz) at 10(-3) BER.
Resumo:
A general procedure for arriving at 3-D models of disulphiderich olypeptide systems based on the covalent cross-link constraints has been developed. The procedure, which has been coded as a computer program, RANMOD, assigns a large number of random, permitted backbone conformations to the polypeptide and identifies stereochemically acceptable structures as plausible models based on strainless disulphide bridge modelling. Disulphide bond modelling is performed using the procedure MODIP developed earlier, in connection with the choice of suitable sites where disulphide bonds could be engineered in proteins (Sowdhamini,R., Srinivasan,N., Shoichet,B., Santi,D.V., Ramakrishnan,C. and Balaram,P. (1989) Protein Engng, 3, 95-103). The method RANMOD has been tested on small disulphide loops and the structures compared against preferred backbone conformations derived from an analysis of putative disulphide subdatabase and model calculations. RANMOD has been applied to disulphiderich peptides and found to give rise to several stereochemically acceptable structures. The results obtained on the modelling of two test cases, a-conotoxin GI and endothelin I, are presented. Available NMR data suggest that such small systems exhibit conformational heterogeneity in solution. Hence, this approach for obtaining several distinct models is particularly attractive for the study of conformational excursions.
Resumo:
Normal mode sound propagation in an isovelocity ocean with random narrow-band surface waves is considered, assuming the root-mean-square wave height to be small compared to the acoustic wavelength. Nonresonant interaction among the normal modes is studied straightforward perturbation technique. The more interesting case of resonant interaction is investigated using the method of multiple scales to obtain a pair of stochastic coupled amplitude equations which are solved using the Peano-Baker expansion technique. Equations for the spatial evolution of the first and second moments of the mode amplitudes are also derived and solved. It is shown that, irrespective of the initial conditions, the mean values of the mode amplitudes tend to zero asymptotically with increasing range, the mean-square amplitudes tend towards a state of equipartition of energy, and the total energy of the modes is conserved.
Resumo:
It is proved that the infinitesimal look-ahead and look-back σ-fields of a random process disagree at atmost countably many time instants.
Resumo:
Kinetics of random sequential, irreversible multilayer deposition of macromolecules of two different sizes on a one dimensional infinite lattice is analyzed at the mean field level. A formal solution for the corresponding rate equation is obtained. The Jamming limits and the distribution of gaps of exact sizes are discussed. In the absence of screening, the jamming limits are shown to be the same for all the layers. A detailed analysis for the components differing by one monomer unit is presented. The small and large time behaviors and the dependence of the individual jamming limits of the k mers and (k−1) mers on k and the rate parameters are analyzed.
Resumo:
Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this paper the question of the extent to which truncated heavy tailed random vectors, taking values in a Banach space, retain the characteristic features of heavy tailed random vectors, is answered from the point of view of the central limit theorem.
Resumo:
We derive and analyze the statistics of reflection coefficient of light backscattered coherently from an amplifying and disordered optical medium modeled by a spatially random refractive index having a uniform imaginary part in one dimension. We find enhancement of reflected intensity owing to a synergy between wave confinement by Anderson localization and coherent amplification by the active medium. This is not the same as that due to enhanced optical path lengths expected from photon diffusion in the random active medium. Our study is relevant to the physical realizability of a mirrorless laser by photon confinement due to Anderson localization.
Resumo:
The temperature and magnetic field dependence of conductivity has been used to probe the inter-tube transport in multiwall carbon nanotubes (MWNTs). The scanning electron microscopy images show highly aligned and random distribution of MWNTs. The conductivity in aligned carbon nanotube (ACNT) and random carbon nanotube (RCNT) samples at low temperature follows T-1/2 (at T < 8 K) and T-3/4 (at T > 8 K) dependence in accordance with the weak localization and electron-electron (e-e) interaction model. The values of diffusion coefficient in ACNT and RCNT are 0.25 x 10(-2) and 0.71 x 10(-2) cm(2) s(-1), respectively, indicating that larger number of inter-tube junctions in later enhances the bulk transport. The positive magnetoconductance (MC) data in both samples show that the weak localization contribution is dominant. However, the saturation of MC at higher fields and lower temperatures indicate that e-e interaction is quite significant in RCNT. The T-3/4 and T-1/2 dependence of inelastic scattering length (l(in)) in ACNT and RCNT samples show that the inelastic e-e scattering is more important in aligned tubes. (C) 2011 American Institute of Physics. doi:10.1063/1.3552911]
Resumo:
Sampling based planners have been successful in path planning of robots with many degrees of freedom, but still remains ineffective when the configuration space has a narrow passage. We present a new technique based on a random walk strategy to generate samples in narrow regions quickly, thus improving efficiency of Probabilistic Roadmap Planners. The algorithm substantially reduces instances of collision checking and thereby decreases computational time. The method is powerful even for cases where the structure of the narrow passage is not known, thus giving significant improvement over other known methods.
Resumo:
In this paper, we study the Foschini Miljanic algorithm, which was originally proposed in a static channel environment. We investigate the algorithm in a random channel environment, study its convergence properties and apply the Gerschgorin theorem to derive sufficient conditions for the convergence of the algorithm. We apply the Foschini and Miljanic algorithm to cellular networks and derive sufficient conditions for the convergence of the algorithm in distribution and validate the results with simulations. In cellular networks, the conditions which ensure convergence in distribution can be easily verified.