999 resultados para Raman Lidar


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral brushite has been synthesised by mixing calcium ions and hydrogen phosphate anions to mimic the reactions in a Cave. The vibrational spectra of the synthesised brushite were compared with that of the natural Cave mineral. Bands attributable to the PO43- and HPO42- anions are observed. Brushite, both synthetic and natural, is characterised by an intense sharp band at 985 cm-1 with a shoulder at 1000 cm-1. Characteristic bending modes are observed in the 300 to 600 cm-1 region. The spectra of the synthesised brushite matches very well the spectrum of brushite from the Moorba Cave, Western Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an inverse Spatially Offset Raman Spectrometer capable of non-invasively identifying packaged substances from a distance. Usual inverse SORS spectrometer has a non-contact distance that is equivalent to the focal distance of the collection system. In this work we demonstrate the defocused geometry with a modified data analysis method capable of making inverse SORS measurements from a distance greater than the focal distance of the collection lenses. With the defocused geometry we were able to detect acetaminophen, concealed inside a 2 mm thick plastic bottle, at a non-contact distance of 30 cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular structure of the sodium borate mineral ameghinite NaB3O3(OH)4 has been determined by the use of vibrational spectroscopy. The crystal structure consists of isolated [B3O3(OH)4]- units formed by one tetrahedron and two triangles. H bonds and Na atoms link these polyanions to form a 3-dimensional framework. The Raman spectrum is dominated by an intense band at 1027 cm-1, attributed to BO stretching vibrations of both the trigonal and tetrahedral boron. A series of Raman bands at 1213, 1245 and 1281cm-1 are ascribed to BOH in-plane bending modes. The infrared spectra are characterized by strong overlap of broad multiple bands. An intense Raman band found at 620 cm-1 is attributed to the bending modes of trigonal and tetrahedral boron. Multiple Raman bands in the OH stretching region are observed at 3206, 3249 and 3385 cm-1. Raman spectroscopy coupled with infrared spectroscopy has enabled aspects about the molecular structure of the borate mineral ameghinite to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current concerns regarding terrorism and international crime highlight the need for new techniques for detecting unknown and hazardous substances. A novel Raman spectroscopy-based technique, spatially offset Raman spectroscopy (SORS), was recently devised for non-invasively probing the contents of diffusely scattering and opaque containers. Here, we demonstrate a modified portable SORS sensor for detecting concealed substances in-field under different background lighting conditions. Samples including explosive precursors, drugs and an organophosphate insecticide (chemical warfare agent surrogate) were concealed inside diffusely scattering packaging including plastic, paper and cloth. Measurements were carried out under incandescent and fluorescent light as well as under daylight to assess the suitability of the probe for different real-life conditions. In each case, it was possible to identify the substances against their reference Raman spectra in less than one minute. The developed sensor has potential for rapid detection of concealed hazardous substances in airports, mail distribution centers and customs checkpoints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral xonotlite Ca 6Si 6O 17(OH) 2 is a crystalline calcium silicate hydrate which is widely used in plaster boards and in many industrial applications. The structure of xonotlite is best described as having a dreierdoppelketten silicate structure, and describes the repeating silicate trimer which forms the silicate chains, and doppel indicating that two chains combine. Raman bands at 1042 and 1070 cm -1 are assigned to the SiO stretching vibrations of linked units of Si 4O 11 units. Raman bands at 961 and 980 cm -1 serve to identify Si 3O 10 units. The broad Raman band at 862 cm -1 is attributed to hydroxyl deformation modes. Intense Raman bands at 593 and 695 cm -1 are assigned to OSiO bending vibrations. Intense Raman bands at 3578, 3611, 3627 and 3665 cm -1 are assigned to OH stretching vibrations of the OH units in xonotlite. Infrared spectra are in harmony with the Raman spectra. Raman spectroscopy with complimentary infrared spectroscopy enables the characterisation of the building material xonotlite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to study the variation in molecular structure of two minerals of the apophyllite mineral group, namely apophyllite-(KF)KCa4Si8O20F.8H2O and apophyllite-(KOH) KCa4Si8O20(F,OH).8H2O. apophyllite-(KF) and apophyllite-(KOH) are different minerals only because of the difference in the percentage of fluorine to hydroxyl ions. The Raman spectra are dominated by a very intense sharp peak at 1059 cm -1. A band at around 846 cm -1 is assigned to the water librational mode. It is proposed that the difference between apophyllite-(KF) and apophyllite-(KOH) is the observation of two Raman bands in the OH stretching region at around 3563 and 3625 cm -1. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electromagnetic enhancement that occurs in surface enhanced Raman scattering (SERS) substrates containing gold nanoparticles (NPs) is believed to arise through the generation of localised surface plasmons. We present results that show no SERS signals are obtained when 25 nm diameter gold NPs layered quartz substrates exposed to 2-aminopyridine are illuminated with plasmon resonant 532 nm radiation, but SERS signals are observed when the same samples are illuminated with non-resonant 785 nm radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteoglycans (PGs) are crucial extracellular matrix (ECM) components that are present in all tissues and organs. Pathological remodeling of these macromolecules can lead to severe diseases such as osteoarthritis or rheumatoid arthritis. To date, PG-associated ECM alterations are routinely diagnosed by invasive analytical methods. Here, we employed Raman microspectroscopy, a laser-based, marker-free and non-destructive technique that allows the generation of spectra with peaks originating from molecular vibrations within a sample, to identify specific Raman bands that can be assigned to PGs within human and porcine cartilage samples and chondrocytes. Based on the non-invasively acquired Raman spectra, we further revealed that a prolonged in vitro culture leads to phenotypic alterations of chondrocytes, resulting in a decreased PG synthesis rate and loss of lipid contents. Our results are the first to demonstrate the applicability of Raman microspectroscopy as an analytical and potential diagnostic tool for non-invasive cell and tissue state monitoring of cartilage in biomedical research. ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FT Raman spectroscopy has been used to characterise the composition of the oxalate precursor to YBCO superconductors. By comparison to spectra of barium, copper and yttrium oxalate it is concluded that the co-precipitate incorporates not only the individual oxalate species but also a species ascribed to a mixed oxalate system. Significantly, Raman spectroscopy demonstrated that the precursor was not amorphous as previously deduced from XRD studies. In contrast, it is hypothesised that the sample consists of very small crystalline particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, we have used vibrational spectroscopy to study the phosphate mineral kosnarite KZr2(PO4)3. Interest in this mineral rests with the ability of zirconium phosphates (ZP) to lock in radioactive elements. ZP have the capacity to concentrate and immobilize the actinide fraction of radioactive phases in homogeneous zirconium phosphate phases. The Raman spectrum of kosnarite is characterized by a very intense band at 1,026 cm−1 assigned to the symmetric stretching vibration of the PO4 3− ν1 symmetric stretching vibration. The series of bands at 561, 595 and 638 cm−1 are assigned to the ν4 out-of-plane bending modes of the PO4 3− units. The intense band at 437 cm−1 with other bands of lower wavenumber at 387, 405 and 421 cm−1 is assigned to the ν2 in-plane bending modes of the PO4 3− units. The number of bands in the antisymmetric stretching region supports the concept that the symmetry of the phosphate anion in the kosnarite structure is preserved. The width of the infrared spectral profile and its complexity in contrast to the well-resolved Raman spectrum show that the pegmatitic phosphates are better studied with Raman spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral beryllonite has been characterized by the combination of Raman spectroscopy and infrared spectroscopy. SEM–EDX was used for the chemical analysis of the mineral. The intense sharp Raman band at 1011 cm-1, was assigned to the phosphate symmetric stretching mode. Raman bands at 1046, 1053, 1068 and the low intensity bands at 1147, 1160 and 1175 cm-1 are attributed to the phosphate antisymmetric stretching vibrations. The number of bands in the antisymmetric stretching region supports the concept of symmetry reduction of the phosphate anion in the beryllonite structure. This concept is supported by the number of bands found in the out-of-plane bending region. Multiple bands are also found in the in-plane bending region with Raman bands at 399, 418, 431 and 466 cm-1. Strong Raman bands at 304 and 354 cm-1 are attributed to metal oxygen vibrations. Vibrational spectroscopy served to determine the molecular structure of the mineral. The pegmatitic phosphate minerals such as beryllonite are more readily studied by Raman spectroscopy than infrared spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed investigation of an intermediate member of the reddingite–phosphoferrite series, using infrared and Raman spectroscopy, scanning electron microcopy and electron microprobe analysis, has been carried out on a homogeneous sample from a lithium-bearing pegmatite named Cigana mine, near Conselheiro Pena, Minas Gerais, Brazil. The determined formula is (Mn1.60Fe1.21Ca0.01Mg0.01)∑2.83(PO4)2.12⋅(H2O2.85F0.01)∑2.86 indicating predominance in the reddingite member. Raman spectroscopy coupled with infrared spectroscopy supports the concept of phosphate, hydrogen phosphate and dihydrogen phosphate units in the structure of reddingite-phosphoferrite. Infrared and Raman bands attributed to water and hydroxyl stretching modes are identified. Vibrational spectroscopy adds useful information to the molecular structure of reddingite–phosphoferrite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrite and chalcopyrite mineral samples from Mangampet barite mine, Kadapa, Andhra Pradesh, India are used in the present study. XRD data indicate that the pyrite mineral has a face centered cubic lattice structure with lattice constant 5.4179 Å. Also it possesses an average particle size of 91.9 nm. An EPR study on the powdered samples confirms the presence of iron in pyrite and iron and Mn(II) in chalcopyrite. The optical absorption spectrum of chalcopyrite indicates presence of copper which is in a distorted octahedral environment. NIR results confirm the presence of water fundamentals and Raman spectrum reveals the presence of water and sulfate ions.