987 resultados para Radiometric calibration
Resumo:
A radiometric analysis of the light coupled by optical fiber amplitude modulating extrinsic-type reflectance displacement sensors is presented. Uncut fiber sensors show the largest range but a smaller responsivity. Single cut fiber sensors exhibit an improvement in responsivity at the expense of range. A further increase in responsivity as well as a reduction in the operational range is obtained when the double cut sensor configuration is implemented. The double cut configuration is particularly suitable in applications where feedback action is applied to the moving reflector surface. © 2000 American Institute of Physics.
Resumo:
A robot mounted camera is useful in many machine vision tasks as it allows control over view direction and position. In this paper we report a technique for calibrating both the robot and the camera using only a single corresponding point. All existing head-eye calibration systems we have encountered rely on using pre-calibrated robots, pre- calibrated cameras, special calibration objects or combinations of these. Our method avoids using large scale non-linear optimizations by recovering the parameters in small dependent groups. This is done by performing a series of planned, but initially uncalibrated robot movements. Many of the kinematic parameters are obtained using only camera views in which the calibration feature is at, or near the image center, thus avoiding errors which could be introduced by lens distortion. The calibration is shown to be both stable and accurate. The robotic system we use consists of camera with pan-tilt capability mounted on a Cartesian robot, providing a total of 5 degrees of freedom.
Resumo:
This paper discusses a new method of impedance control that has been successfully implemented on the master robot of a teleoperation system. The method involves calibrating the robot to quantify the effect of adjustable controller parameters on the impedances along its different axes. The empirical equations relating end-effector impedance to the controller's feedback gains are obtained by performing system identification tests along individual axes of the robot. With these equations, online control of end-effector stiffness and damping is possible without having to monitor joint torques or solving complex algorithms. Hard contact conditions and compliant interfaces have been effectively demonstrated on a telemanipulation test-bed using appropriate combinations of stiffness and damping settings obtained by this method.
Resumo:
It took the solar polar passage of Ulysses in the early 1990s to establish the global structure of the solar wind speed during solar minimum. However, it remains unclear if the solar wind is composed of two distinct populations of solar wind from different sources (e.g., closed loops which open up to produce the slow solar wind) or if the fast and slow solar wind rely on the superradial expansion of the magnetic field to account for the observed solar wind speed variation. We investigate the solar wind in the inner corona using the Wang-Sheeley-Arge (WSA) coronal model incorporating a new empirical magnetic topology–velocity relationship calibrated for use at 0.1 AU. In this study the empirical solar wind speed relationship was determined by using Helios perihelion observations, along with results from Riley et al. (2003) and Schwadron et al. (2005) as constraints. The new relationship was tested by using it to drive the ENLIL 3-D MHD solar wind model and obtain solar wind parameters at Earth (1.0 AU) and Ulysses (1.4 AU). The improvements in speed, its variability, and the occurrence of high-speed enhancements provide confidence that the new velocity relationship better determines the solar wind speed in the outer corona (0.1 AU). An analysis of this improved velocity field within the WSA model suggests the existence of two distinct mechanisms of the solar wind generation, one for fast and one for slow solar wind, implying that a combination of present theories may be necessary to explain solar wind observations.
Resumo:
This study analyzes the issue of American option valuation when the underlying exhibits a GARCH-type volatility process. We propose the usage of Rubinstein's Edgeworth binomial tree (EBT) in contrast to simulation-based methods being considered in previous studies. The EBT-based valuation approach makes an implied calibration of the pricing model feasible. By empirically analyzing the pricing performance of American index and equity options, we illustrate the superiority of the proposed approach.
Resumo:
Accurate calibration of a head mounted display (HMD) is essential both for research on the visual system and for realistic interaction with virtual objects. Yet, existing calibration methods are time consuming and depend on human judgements, making them error prone, and are often limited to optical see-through HMDs. Building on our existing approach to HMD calibration Gilson et al. (2008), we show here how it is possible to calibrate a non-see-through HMD. A camera is placed inside a HMD displaying an image of a regular grid, which is captured by the camera. The HMD is then removed and the camera, which remains fixed in position, is used to capture images of a tracked calibration object in multiple positions. The centroids of the markers on the calibration object are recovered and their locations re-expressed in relation to the HMD grid. This allows established camera calibration techniques to be used to recover estimates of the HMD display's intrinsic parameters (width, height, focal length) and extrinsic parameters (optic centre and orientation of the principal ray). We calibrated a HMD in this manner and report the magnitude of the errors between real image features and reprojected features. Our calibration method produces low reprojection errors without the need for error-prone human judgements.
Resumo:
This study was undertaken to explore gel permeation chromatography (GPC) for estimating molecular weights of proanthocyanidin fractions isolated from sainfoin (Onobrychis viciifolia). The results were compared with data obtained by thiolytic degradation of the same fractions. Polystyrene, polyethylene glycol and polymethyl methacrylate standards were not suitable for estimating the molecular weights of underivatized proanthocyanidins. Therefore, a novel HPLC-GPC method was developed based on two serially connected PolarGel-L columns using DMF that contained 5% water, 1% acetic acid and 0.15 M LiBr at 0.7 ml/min and 50 degrees C. This yielded a single calibration curve for galloyl glucoses (trigalloyl glucose, pentagalloyl glucose), ellagitannins (pedunculagin, vescalagin, punicalagin, oenothein B, gemin A), proanthocyanidins (procyanidin B2, cinnamtannin B1), and several other polyphenols (catechin, epicatechin gallate, epicallocatechin gallate, amentoflavone). These GPC predicted molecular weights represented a considerable advance over previously reported HPLC-GPC methods for underivatized proanthocyanidins. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Producing projections of future crop yields requires careful thought about the appropriate use of atmosphere-ocean global climate model (AOGCM) simulations. Here we describe and demonstrate multiple methods for ‘calibrating’ climate projections using an ensemble of AOGCM simulations in a ‘perfect sibling’ framework. Crucially, this type of analysis assesses the ability of each calibration methodology to produce reliable estimates of future climate, which is not possible just using historical observations. This type of approach could be more widely adopted for assessing calibration methodologies for crop modelling. The calibration methods assessed include the commonly used ‘delta’ (change factor) and ‘nudging’ (bias correction) approaches. We focus on daily maximum temperature in summer over Europe for this idealised case study, but the methods can be generalised to other variables and other regions. The calibration methods, which are relatively easy to implement given appropriate observations, produce more robust projections of future daily maximum temperatures and heat stress than using raw model output. The choice over which calibration method to use will likely depend on the situation, but change factor approaches tend to perform best in our examples. Finally, we demonstrate that the uncertainty due to the choice of calibration methodology is a significant contributor to the total uncertainty in future climate projections for impact studies. We conclude that utilising a variety of calibration methods on output from a wide range of AOGCMs is essential to produce climate data that will ensure robust and reliable crop yield projections.
Resumo:
Very high-resolution Synthetic Aperture Radar sensors represent an alternative to aerial photography for delineating floods in built-up environments where flood risk is highest. However, even with currently available SAR image resolutions of 3 m and higher, signal returns from man-made structures hamper the accurate mapping of flooded areas. Enhanced image processing algorithms and a better exploitation of image archives are required to facilitate the use of microwave remote sensing data for monitoring flood dynamics in urban areas. In this study a hybrid methodology combining radiometric thresholding, region growing and change detection is introduced as an approach enabling the automated, objective and reliable flood extent extraction from very high-resolution urban SAR images. The method is based on the calibration of a statistical distribution of “open water” backscatter values inferred from SAR images of floods. SAR images acquired during dry conditions enable the identification of areas i) that are not “visible” to the sensor (i.e. regions affected by ‘layover’ and ‘shadow’) and ii) that systematically behave as specular reflectors (e.g. smooth tarmac, permanent water bodies). Change detection with respect to a pre- or post flood reference image thereby reduces over-detection of inundated areas. A case study of the July 2007 Severn River flood (UK) observed by the very high-resolution SAR sensor on board TerraSAR-X as well as airborne photography highlights advantages and limitations of the proposed method. We conclude that even though the fully automated SAR-based flood mapping technique overcomes some limitations of previous methods, further technological and methodological improvements are necessary for SAR-based flood detection in urban areas to match the flood mapping capability of high quality aerial photography.
Resumo:
The All-Weather Volcano Topography Imaging Sensor remote sensing instrument is a custom-built millimeter-wave (MMW) sensor that has been developed as a practical field tool for remote sensing of volcanic terrain at active lava domes. The portable instrument combines active and passive MMW measurements to record topographic and thermal data in almost all weather conditions from ground-based survey points. We describe how the instrument is deployed in the field, the quality of the primary ranging and radiometric measurements, and the postprocessing techniques used to derive the geophysical products of the target terrain, surface temperature, and reflectivity. By comparison of changing topography, we estimate the volume change and the lava extrusion rate. Validation of the MMW radiometry is also presented by quantitative comparison with coincident infrared thermal imagery.
Resumo:
The goal was to quantitatively estimate and compare the fidelity of images acquired with a digital imaging system (ADAR 5500) and generated through scanning of color infrared aerial photographs (SCIRAP) using image-based metrics. Images were collected nearly simultaneously in two repetitive flights to generate multi-temporal datasets. Spatial fidelity of ADAR was lower than that of SCIRAP images. Radiometric noise was higher for SCIRAP than for ADAR images, even though noise from misregistration effects was lower. These results suggest that with careful control of film scanning, the overall fidelity of SCIRAP imagery can be comparable to that of digital multispectral camera data. Therefore, SCIRAP images can likely be used in conjunction with digital metric camera imagery in long-term landcover change analyses.
Resumo:
The Soil Moisture and Ocean Salinity (SMOS) satellite marks the commencement of dedicated global surface soil moisture missions, and the first mission to make passive microwave observations at L-band. On-orbit calibration is an essential part of the instrument calibration strategy, but on-board beam-filling targets are not practical for such large apertures. Therefore, areas to serve as vicarious calibration targets need to be identified. Such sites can only be identified through field experiments including both in situ and airborne measurements. For this purpose, two field experiments were performed in central Australia. Three areas are studied as follows: 1) Lake Eyre, a typically dry salt lake; 2) Wirrangula Hill, with sparse vegetation and a dense cover of surface rock; and 3) Simpson Desert, characterized by dry sand dunes. Of those sites, only Wirrangula Hill and the Simpson Desert are found to be potentially suitable targets, as they have a spatial variation in brightness temperatures of <4 K under normal conditions. However, some limitations are observed for the Simpson Desert, where a bias of 15 K in vertical and 20 K in horizontal polarization exists between model predictions and observations, suggesting a lack of understanding of the underlying physics in this environment. Subsequent comparison with model predictions indicates a SMOS bias of 5 K in vertical and 11 K in horizontal polarization, and an unbiased root mean square difference of 10 K in both polarizations for Wirrangula Hill. Most importantly, the SMOS observations show that the brightness temperature evolution is dominated by regular seasonal patterns and that precipitation events have only little impact.
Resumo:
Motivated by the importance to weather and climate of the Indo-Pacific seas, we present a new calibration of the Visible Infrared Spin-Scan Radiometer (VISSR) on the geostationary meteorological satellite, GMS-5. VISSR imagery has significant potential for exploring the dynamics of the ocean and air–sea interactions in this poorly characterized region, by virtue of the VISSR's surface temperature retrieval capability and hourly sampling. However, the calibration of the thermal imagery supplied by the Japanese Meteorological Agency (JMA) is inconsistent with the spectral characteristics of the channels, and published details of the JMA calibration procedure are scant. We use the well-characterized Along-Track Scanning Radiometer 2 (ATSR-2) as a reference, and determine calibration corrections for GMS-5 VISSR. We obtain more credible VISSR brightness temperatures and demonstrate sea surface temperature (SST) retrieval that validates well against in situ measurements (bias ∼0.3 and scatter ∼0.4 K). Comparison with a widely used sea surface temperature analysis shows that the GMS-5 VISSR SST fields capture important spatial structure, absent in the analysis.
Resumo:
We present a new speleothem record of atmospheric Δ14C between 28 and 44 ka that offers considerable promise for resolving some of the uncertainty associated with existing radiocarbon calibration curves for this time period. The record is based on a comprehensive suite of AMS 14C ages, using new low-blank protocols, and U–Th ages using high precision MC-ICPMS procedures. Atmospheric Δ14C was calculated by correcting 14C ages with a constant dead carbon fraction (DCF) of 22.7 ± 5.9%, based on a comparison of stalagmite 14C ages with the IntCal04 (Reimer et al., 2004) calibration curve between 15 and 11 ka. The new Δ14C speleothem record shows similar structure and amplitude to that derived from Cariaco Basin foraminifera (Hughen et al., 2004, 2006), and the match is further improved if the latter is tied to the most recent Greenland ice core chronology (Svensson et al., 2008). These data are however in conflict with a previously published 14C data set for a stalagmite record from the Bahamas — GB-89-24-1 (Beck et al., 2001), which likely suffered from 14C analytical blank subtraction issues in the older part of the record. The new Bahamas speleothem ∆14C data do not show the extreme shifts between 44 and 40 ka reported in the previous study (Beck et al., 2001). Causes for the observed structure in derived atmospheric Δ14C variation based on the new speleothem data are investigated with a suite of simulations using an earth system model of intermediate complexity. Data-model comparison indicates that major fluctuations in atmospheric ∆14C during marine isotope stage 3 is primarily a function of changes in geomagnetic field intensity, although ocean–atmosphere system reorganisation also played a supporting role.