916 resultados para Radioisotopes in medical diagnosis.
Resumo:
OBJECTIVE: Gadolinium-enhanced pulmonary magnetic resonance angiography (MRA) can be an option in patients with a history of previous adverse reaction to iodinated contrast material and renal insufficiency. Radiation is also avoided. The aim of this study is to prospectively compare the diagnostic value of MRA with that of a diagnostic strategy, taking into account catheter angiography, computed tomography angiography (CTA), and lung scintigraphy [ventilation-perfusion (VQ)]. MATERIAL AND METHODS: Magnetic resonance angiography was done in 48 patients with clinically suspected pulmonary embolism (PE) using fast gradient echo coronal acquisition with gadolinium. Interpretation was done with native coronal images and multiplanar maximum intensity projection reconstructions. Results were compared to catheter angiography (n=15), CTA (n=34), VQ (n=45), as well as 6-12 months clinical follow-ups, according to a sequenced reference tree. RESULTS: The final diagnosis of PE was retained in 11 patients (23%). There were two false negatives and no false positive results with MRA. Computed tomography angiography resulted in no false negatives or false positives. Magnetic resonance angiography had a sensitivity of 82% and a specificity of 100%. CONCLUSION: In our study, pulmonary MRA had a sensitivity of 82% and a specificity of 100% for the diagnosis of PE, with slightly less sensitivity than CTA. In the diagnostic algorithm of PE, pulmonary MRA should be considered as an alternative to CTA when iodine contrast injection or radiation is a significant matter.
Resumo:
Although prosthetic joint infection (PJI) is a rare event after arthroplasty, it represents a significant complication that is associated with high morbidity, need for complex treatment, and substantial healthcare costs. An accurate and rapid diagnosis of PJI is crucial for treatment success. Current diagnostic methods in PJI are insufficient with 10-30% false-negative cultures. Consequently, there is a need for research and development into new methods aimed at improving diagnostic accuracy and speed of detection. In this article, we review available conventional diagnostic methods for the diagnosis of PJI (laboratory markers, histopathology, synovial fluid and periprosthetic tissue cultures), new diagnostic methods (sonication of implants, specific and multiplex PCR, mass spectrometry) and innovative techniques under development (new laboratory markers, microcalorimetry, electrical method, reverse transcription [RT]-PCR, fluorescence in situ hybridization [FISH], biofilm microscopy, microarray identification, and serological tests). The results of highly sensitive diagnostic techniques with unknown specificity should be interpreted with caution. The organism identified by a new method may represent a real pathogen that was unrecognized by conventional diagnostic methods or contamination during specimen sampling, transportation, or processing. For accurate interpretation, additional studies are needed, which would evaluate the long-term outcome (usually >2 years) with or without antimicrobial treatment. It is expected that new rapid, accurate, and fully automatic diagnostic tests will be developed soon.
Resumo:
In this paper we introduce a highly efficient reversible data hiding system. It is based on dividing the image into tiles and shifting the histograms of each image tile between its minimum and maximum frequency. Data are then inserted at the pixel level with the largest frequency to maximize data hiding capacity. It exploits the special properties of medical images, where the histogram of their nonoverlapping image tiles mostly peak around some gray values and the rest of the spectrum is mainlyempty. The zeros (or minima) and peaks (maxima) of the histograms of the image tiles are then relocated to embed the data. The grey values of some pixels are therefore modified.High capacity, high fidelity, reversibility and multiple data insertions are the key requirements of data hiding in medical images. We show how histograms of image tiles of medical images can be exploited to achieve these requirements. Compared with data hiding method applied to the whole image, our scheme can result in 30%-200% capacity improvement and still with better image quality, depending on the medical image content. Additional advantages of the proposed method include hiding data in the regions of non-interest and better exploitation of spatial masking.
Resumo:
Mature T-cell and T/NK-cell neoplasms are both uncommon and heterogeneous, among the broad category of non-Hodgkin's lymphomas. Due to the lack of specific genetic alterations in the vast majority of cases, most currently defined entities show overlapping morphologic and immunophenotypic features and therefore pose a challenge to the diagnostic pathologist. The goal of the symposium is to address current criteria for the recognition of specific subtypes of T-cell lymphoma, and to highlight new data regarding emerging immunophenotypic or molecular markers. This activity has been designed to meet the needs of practicing pathologists, and residents and fellows enrolled in training programs in anatomic and clinical pathology. It should be a particular benefit to those with an interest in hematopathology. Upon completion of this activity, participants should be better able to: -To be able to state the basis for the classification of mature T-cell malignancies involving nodal and extranodal sites. -To recognize and accurately diagnose the various subtypes of nodal and extranodal peripheral T-cell lymphomas. -To utilize immunohistochemical and molecular tests to characterize atypical T-cell proliferations. -To recognize and accurately diagnose T-cell lymphoproliferative lesions involving the skin and gastrointestinal tract, and be able to provide guidance regarding their clinical aggressiveness and management -To be able to utilize flow cytometric data to identify diverse functional T-cell subsets.
Resumo:
The increase in total health care expenditures in France can be explained by three distinct factors : the purely demographic effect (namely, the increase in the proportion of elderly people, given that health expenditure is an increasing function of age) ; the changes in morbidity at a given age ; the changes in practices, for a given age and morbidity level (e.g technological progress). The aim of this paper is basically to disentangle, evaluate and interpret the respective effects of these three factors. [Extrait introduction p. 3]
Resumo:
Statistics has become an indispensable tool in biomedical research. Thanks, in particular, to computer science, the researcher has easy access to elementary "classical" procedures. These are often of a "confirmatory" nature: their aim is to test hypotheses (for example the efficacy of a treatment) prior to experimentation. However, doctors often use them in situations more complex than foreseen, to discover interesting data structures and formulate hypotheses. This inverse process may lead to misuse which increases the number of "statistically proven" results in medical publications. The help of a professional statistician thus becomes necessary. Moreover, good, simple "exploratory" techniques are now available. In addition, medical data contain quite a high percentage of outliers (data that deviate from the majority). With classical methods it is often very difficult (even for a statistician!) to detect them and the reliability of results becomes questionable. New, reliable ("robust") procedures have been the subject of research for the past two decades. Their practical introduction is one of the activities of the Statistics and Data Processing Department of the University of Social and Preventive Medicine, Lausanne.
Resumo:
The past decade has seen the emergence of next-generation sequencing (NGS) technologies, which have revolutionized the field of human molecular genetics. With NGS, significant portions of the human genome can now be assessed by direct sequence analysis, highlighting normal and pathological variants of our DNA. Recent advances have also allowed the sequencing of complete genomes, by a method referred to as whole genome sequencing (WGS). In this work, we review the use of WGS in medical genetics, with specific emphasis on the benefits and the disadvantages of this technique for detecting genomic alterations leading to Mendelian human diseases and to cancer.
Resumo:
Background Maternal mortality is a major public-health problem in developing countries. Extreme differences in maternal mortality rates between developed and developing countries indicate that most of these deaths are preventable. Most information on the causes of maternal death in these areas is based on clinical records and verbal autopsies. Clinical diagnostic errors may play a significant role in this problem and might also have major implications for the evaluation of current estimations of causes of maternal death. Methods and Findings A retrospective analysis of clinico-pathologic correlation was carried out, using necropsy as the gold standard for diagnosis. All maternal autopsies (n ¼ 139) during the period from October 2002 to December 2004 at the Maputo Central Hospital, Mozambique were included and major diagnostic discrepancies were analyzed (i.e., those involving the cause of death). Major diagnostic errors were detected in 56 (40.3%) maternal deaths. A high rate of false negative diagnoses was observed for infectious diseases, which showed sensitivities under 50%: HIV/AIDS-related conditions (33.3%), pyogenic bronchopneumonia (35.3%), pyogenic meningitis (40.0%), and puerperal septicemia (50.0%). Eclampsia, was the main source of false positive diagnoses, showing a low predictive positive value (42.9%). Conclusions Clinico-pathological discrepancies may have a significant impact on maternal mortality in sub-Saharan Africa and question the validity of reports based on clinical data or verbal autopsies. Increasing clinical awareness of the impact of obstetric and nonobstetric infections with their inclusion in the differential diagnosis, together with a thorough evaluation of cases clinically thought to be eclampsia, could have a significant impact on the reduction of maternal mortality.
Resumo:
Children with Wiskott-Aldrich syndrome (WAS) are often first diagnosed with immune thrombocytopenia (ITP), potentially leading to both inappropriate treatment and the delay of life-saving definitive therapy. WAS is traditionally differentiated from ITP based on the small size of WAS platelets. In practice, microthrombocytopenia is often not present or not appreciated in children with WAS. To develop an alternative method of differentiating WAS from ITP, we retrospectively reviewed all complete blood counts and measurements of immature platelet fraction (IPF) in 18 subjects with WAS and 38 subjects with a diagnosis of ITP treated at our hospital. Examination of peripheral blood smears revealed a wide range of platelet sizes in subjects with WAS. Mean platelet volume (MPV) was not reported in 26% of subjects, and subjects in whom MPV was not reported had lower platelet counts than did subjects in whom MPV was reported. Subjects with WAS had a lower IPF than would be expected for their level of thrombocytopenia, and the IPF in subjects with WAS was significantly lower than in subjects with a diagnosis of ITP. Using logistic regression, we developed and validated a rule based on platelet count and IPF that was more sensitive for the diagnosis of WAS than was the MPV, and was applicable regardless of the level of platelets or the availability of the MPV. Our observations demonstrate that MPV is often not available in severely thrombocytopenic subjects, which may hinder the diagnosis of WAS. In addition, subjects with WAS have a low IPF, which is consistent with the notion that a platelet production defect contributes to the thrombocytopenia of WAS. Knowledge of this detail of WAS pathophysiology allows to differentiate WAS from ITP with increased sensitivity, thereby allowing a physician to spare children with WAS from inappropriate treatment, and make definitive therapy available in a timely manner.
Resumo:
Background Maternal mortality is a major public-health problem in developing countries. Extreme differences in maternal mortality rates between developed and developing countries indicate that most of these deaths are preventable. Most information on the causes of maternal death in these areas is based on clinical records and verbal autopsies. Clinical diagnostic errors may play a significant role in this problem and might also have major implications for the evaluation of current estimations of causes of maternal death. Methods and Findings A retrospective analysis of clinico-pathologic correlation was carried out, using necropsy as the gold standard for diagnosis. All maternal autopsies (n ¼ 139) during the period from October 2002 to December 2004 at the Maputo Central Hospital, Mozambique were included and major diagnostic discrepancies were analyzed (i.e., those involving the cause of death). Major diagnostic errors were detected in 56 (40.3%) maternal deaths. A high rate of false negative diagnoses was observed for infectious diseases, which showed sensitivities under 50%: HIV/AIDS-related conditions (33.3%), pyogenic bronchopneumonia (35.3%), pyogenic meningitis (40.0%), and puerperal septicemia (50.0%). Eclampsia, was the main source of false positive diagnoses, showing a low predictive positive value (42.9%). Conclusions Clinico-pathological discrepancies may have a significant impact on maternal mortality in sub-Saharan Africa and question the validity of reports based on clinical data or verbal autopsies. Increasing clinical awareness of the impact of obstetric and nonobstetric infections with their inclusion in the differential diagnosis, together with a thorough evaluation of cases clinically thought to be eclampsia, could have a significant impact on the reduction of maternal mortality.