969 resultados para Radiation dose reduction
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Resumo:
In radiotherapy, computational systems are used for radiation dose determination in the treatment’s volume and radiometric parameters quality analysis of equipment and field irradiated. Due to the increasing technological advancement, several research has been performed in brachytherapy for different computational algorithms development which may be incorporated to treatment planning systems, providing greater accuracy and confidence in the dose calculation. Informatics and information technology fields undergo constant updating and refinement, allowing the use Monte Carlo Method to simulate brachytherapy source dose distribution. The methodology formalization employed to dosimetric analysis is based mainly in the American Association of Physicists in Medicine (AAPM) studies, by Task Group nº 43 (TG-43) and protocols aimed at dosimetry of these radiation sources types. This work aims to analyze the feasibility of using the MCNP-5C (Monte Carlo N-Particle) code to obtain radiometric parameters of brachytherapy sources and so to study the radiation dose variation in the treatment planning. Simulations were performed for the radiation dose variation in the source plan and determined the dosimetric parameters required by TG-43 formalism for the characterization of the two high dose rate iridium-192 sources. The calculated values were compared with the presents in the literature, which were obtained with different Monte Carlo simulations codes. The results showed excellent consistency with the compared codes, enhancing MCNP-5C code the capacity and viability in the sources dosimetry employed in HDR brachytherapy. The method employed may suggest a possible incorporation of this code in the treatment planning systems provided by manufactures together with the equipment, since besides reducing acquisition cost, it can also make the used computational routines more comprehensive, facilitating the brachytherapy ...
Resumo:
The objective of the present study was to optimize a radiographic technique for hand examinations using a computed radiography (CR) system and demonstrate the potential for dose reductions compared with clinically established technique. An exposure index was generated from the optimized technique to guide operators when imaging hands. Homogeneous and anthropomorphic phantoms that simulated a patient's hand were imaged using a CR system at various tube voltages and current settings (40-55 kVp, 1.25-2.8 mAs), including those used in clinical routines (50 kVp, 2.0 mAs) to obtain an optimized chart. The homogeneous phantom was used to assess objective parameters that are associated with image quality, including the signal difference-to-noise ratio (SdNR), which is used to define a figure of merit (FOM) in the optimization process. The anthropomorphic phantom was used to subjectively evaluate image quality using Visual Grading Analysis (VGA) that was performed by three experienced radiologists. The technique that had the best VGA score and highest FOM was considered the gold standard (GS) in the present study. Image quality, dose and the exposure index that are currently used in the clinical routine for hand examinations in our institution were compared with the GS technique. The effective dose reduction was 67.0%. Good image quality was obtained for both techniques, although the exposure indices were 1.60 and 2.39 for the GS and clinical routine, respectively.
Resumo:
Introduction: The request of three-dimensional images (3D) of the dentomaxillofacial complex has increased. Hence, new possibilities for assessment, treatment as well as follow-up after treatment have increased their importance with the use of cone beam computed tomography (CBCT). The images in two dimensions (2D) have inherent problems that can be solved with treedimensional images assessment. Objectives: To clarify the main doubts about the operational mechanism of complementary diagnostic method; to explain the advantages and disadvantages, to discuss the effective radiation dose and possible applications in orthodontia. Conclusion: The information generated by 2D images from the CBCT does not show differences that may endanger the orthodontic planning when compared with the images of 2D conventional radiographs. The effective radiation dose received by the patient should not be considered as a limiting factor of the tomography exam request.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Radiation dose assessment is essential for several medical treatments and diagnostic procedures. In this context, nanotechnology has been used in the development of improved radiation sensors, with higher sensitivity as well as smaller sizes and energy dependence. This paper deals with the synthesis and characterization of gold/alanine nanocomposites with varying mass percentage of gold, for application as radiation sensors. Alanine is an excellent stabilizing agent for gold nanoparticles because the size of the nanoparticles does not augment with increasing mass percentage of gold, as evidenced by UV-vis spectroscopy, dynamic light scattering, and transmission electron microscopy. X-ray diffraction patterns suggest that the alanine crystalline orientation undergoes alterations upon the addition of gold nanoparticles. Fourier transform infrared spectroscopy indicates that there is interaction between the gold nanoparticles and the amine group of the alanine molecules, which may be the reason for the enhanced stability of the nanocomposite. The application of the nanocomposites as radiation detectors was evaluated by the electron spin resonance technique. The sensitivity is improved almost 3 times in the case of the nanocomposite containing 3% (w/w) gold, so it can be easily tuned by changing the amount of gold nanoparticles in the nanocomposites, without the size of the nanoparticles influencing the radiation absorption. In conclusion, the featured properties, such as homogeneity, nanoparticle size stability, and enhanced sensitivity, make these nanocomposites potential candidates for the construction of small-sized radiation sensors with tunable sensitivity for application in several medical procedures.
Resumo:
Between the years 1992 and 1995 about 3.5 million hadronic Z decays were collected by the DELPHI detector at CERN. This data has been used to measure the production and lifetime of the beauty strange baryon Ξb, in the inclusive decay channel Ξb →Ξ-ℓ- X. The Ξ- baryon was reconstructed through the decay Ξ- → Λ π-, using a constrained fit method for cascade decays. An iterative discriminant analysis was used for the Ξb selection. A search for the Ξb baryon was also performed using an alternative method of reconstructing the Ξ- baryon. A measurement of the production of the charmed strange baryon Ξc in the decay channel Ξc → Ξ-π+ using the same data is also presented. The radiation monitoring system of the Silicon Microstrip Tracker in the DØ detector is studied and used to estimate the radiation dose received by the Silicon detector during normal running conditions of the TeVatron accelerator.
Resumo:
[EN] Background: DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Methods: Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results: Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. Conclusions: An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity.
Resumo:
Protective patient equipment for CT examinations is not routinely provided. The aim of this study was to determine whether, and if so what, specific protective equipment is beneficial during CT scans. The absorbed organ doses and the effective doses for thorax, abdomen/pelvis and brain CT investigation with and without the use of protective patient equipment have been determined and compared. All measurements were carried out on modern multislice CT scanner using an anthropomorphic phantom and thermoluminescence dosemeters. The measurements show that protective equipment reduces the dose within the scattered beam area. The highest organ dose reduction was found in organs that protrude from the trunk like the testes or the female breasts that can largely be covered by the protective equipment. The most reduction of the effective dose was found in the male abdomen/pelvis examination (0.32 mSv), followed by the brain (0.11 mSv) and the thorax (0.06 mSv). It is concluded that the use of protective equipment can reduce the applied dose to the patient.
Resumo:
Combined-modality treatment consisting of four to six cycles of chemotherapy followed by involved-field radiotherapy (IFRT) is the standard of care for patients with early unfavorable Hodgkin's lymphoma (HL). It is unclear whether treatment results can be improved with more intensive chemotherapy and which radiation dose needs to be applied.
Resumo:
This review summarizes current evidence based on pertinent literature on low-dose computed tomography angiography (CTA) of the body. Various strategies for optimizing CTA protocols with the aim to lower the radiation dose while maintaining the diagnostic accuracy of the examination are summarized. To date, various publications have demonstrated that CTA of the body can be performed at a low radiation dose while providing high quality information. Nevertheless, a number of questions still need to be answered, including the optimal combination of tube voltage and tube current settings, as well as the appropriate protocol parameters in relation to the body physiognomy and the specific body region imaged.
Resumo:
The purpose of this study was to determine the influence of iodinated contrast agents on the formation of DNA double-strand breaks in vitro in lymphocytes and to verify these results in patients undergoing diagnostic computed tomography examinations. Blood samples were irradiated in vitro in the presence of iodinated X-ray contrast agent. Controls were irradiated without contrast agent. Fourteen patients were investigated using contrast-enhanced computed tomography (CT), and 14 other patients with unenhanced CT. Blood samples were taken prior to and 5 min and 1, 2 and 24 h after the CT examination. In these blood samples the average number of γH2Ax-foci per lymphocyte was enumerated by fluorescence microscopy. Statistical differences between foci numbers developed in the presence and absence of contrast agent were tested using an independent sample t-test. In vitro foci numbers after irradiation were significantly higher when contrast agent was present during irradiation. In vivo, γH2Ax-foci levels were 58% higher in patients undergoing contrast-enhanced CT compared with those undergoing unenhanced CT. In the presence of iodinated contrast agents DNA, damage is increased and the radiation dose is not the only factor affecting the amount of DNA damage. Individual patient characteristics and biological dosimetry applications, e.g. the analysis of γH2Ax-foci, have to be considered.
Resumo:
The aim of this work was to use metabolomics to evaluate sebum as a source of biomarkers for gamma-radiation exposure in the rat, and potentially in man. Proof of concept of radiation metabolomics was previously demonstrated in both mouse and rat urine, from the radiation dose- and time-dependent excretion of a set of urinary biomarkers.
Resumo:
The radiation dose rates at flight altitudes may be hazardously increased during solar cosmic ray events. Within the scope of this paper we investigate the total accumulated radiation doses, i.e. the contribution of galactic and solar cosmic rays, during the two extreme solar cosmic ray events on 29 September 1989 and on 20 January 2005 along selected flight profiles. In addition, the paper discusses the consequences of possible solar cosmic ray flux approximations on the results of the radiation dose computations.