915 resultados para RGB and IR Registration
Resumo:
The introduction of computer and communications technology, and particularly the internet, into education has opened up some new possibilities for teaching and learning. Courses designed and delivered in an online environment offer the possibility of highly interactive and individually focussed teaching and learning experiences. However, online courses also present new challenges for both teachers and students. A qualitative study was conducted to explore teachers' perceptions about the similarities and differences in teaching in the online and face-to-face (F2F) environments. Focus group discussions were held with 5 teachers; 2 teachers were interviewed in depth. The participants, 3 female and 2 male, were full-time teachers from a large College of Applied Arts & Technology in southern Ontario. Each of them had over 10 years of F2F teaching experience and each had been involved in the development and teaching of at least one online course. i - -; The study focussed on how teaching in the online environment compares with teaching in the F2F environment, what roles teachers and students adopt in each setting, what learning communities mean online and F2F and how they are developed, and how institutional policies, procedures, and infrastructure affect teaching and learning F2F and online. This study was emic in nature, that is the teachers' words determine the themes identified throughout the study. The factors identified as affecting teaching in an online environment included teacher issues such as course design, motivation to teach online, teaching style, role, characteristics or skills, and strategies. Student issues as perceived by the teachers included learning styles, role, and characteristics or skills. As well, technology issues such as a reliable infrastructure, clear role and responsibilities for maintaining the infrastructure, support, and multimedia capability affected teaching online. Finally, administrative policies and procedures, including teacher selection and training, registration and scheduling procedures, intellectual property and workload policies, and the development and communication of a comprehensive strategic plan were found to impact on teaching online. The teachers shared some of the benefits they perceived about teaching online as well as some of the challenges they had faced and challenges they perceived students had faced online. Overall, the teachers feh that there were more similarities than differences in teaching between the two environments, with the main differences being the change from F2F verbal interactions involving body language to online written interactions without body language cues, and the fundamental reliance on technology in the online environment. These findings support previous research in online teaching and learning, and add teachers' perspectives on the factors that stay the same and the factors that change when moving from a F2F environment to an online environment.
Resumo:
This thesis explored the development of several methodologies for the stereoselective construction of ligand frameworks and some of their applications. The first segment concerns the application of an enantioselective lithiation at an Sp3_ hybridized position adjacent to nitrogen by means of the widely used and typically highly effective enantioselective lithiation with ( -)-sparteine. This investigation was intended to develop a method to install chirality into a system that would be converted into a family of diaminoylidenes for use as phosphine mimics in transition metal catalysis or as nucleophilic reagents. Molecular modeling of the system revealed some key interactions between the substrate and (-)-sparteine that provided general insight into the diamine's mode of action and should lend some predictive value to its future applications. The second portion focuses on the development of methods to access 1,2- disubstituted aminoferrocenes, an underexplored class of metallocenes possessing planar chirality. Two routes were examined involving a diastereoselective and an enantioselective pathway, where the latter method made use of the first BF3-mediated lithiation-substitution to install planar chirality. Key derivatives such as 1,2- aminophosphines, made readily accessible by the new route, were evaluated as ligands for Pd(II), Pt(II) and Ir(I). These complexes show activity in a number of transformations with both achiral and prochiral substrates. Optimization experiments were conducted to prepare enantiomerically enriched 2-substituted-I-aminoferrocenes by direct asymmetric lithiation of BF3-coordinated tertiary aminoferrocenes. A predictive computational model describing the transition state of this reaction was developed in collaboration with Professor Travis Dudding's group (Department of Chemistry, Brock University). The predicted stereochemistry of the process was confirmed by single-crystal X-ray analysis of a 2-phosphino-l-dimethylaminoferrocene derivative. Enantiomerically pure samples of the aminophosphine ligands derived from this new process have given promising preliminary results in the enantioselective hydrogenation of prochiral alkenes and warrant further stUdy in metal-mediated catalysis.
Brain tumor and brain endothelial cells' response to ionizing radiation and phytochemical treatments
Resumo:
Le glioblastome multiforme (GBM) représente la tumeur cérébrale primaire la plus agressive et la plus vascularisée chez l’adulte. La survie médiane après le diagnostic est de moins d’un an en l’absence de traitement. Malheureusement, 90% des patients traités avec de la radiothérapie après la résection chirurgicale d’un GBM développent une récidive tumorale. Récemment, le traitement des GBM avec radiothérapie et témozolomide, un agent reconnu pour ses propriétés antiangiogéniques, a permis de prolonger la survie médiane à 14,6 mois. Des efforts sont déployés pour identifier des substances naturelles capables d’inhiber, de retarder ou de renverser le processus de carcinogenèse. Epigallocatechin-3-gallate (EGCG), un polyphénol retrouvé dans le thé vert, est reconnu pour ses propriétés anticancéreuses et antiangiogéniques. L’EGCG pourrait sensibiliser les cellules tumorales cérébrales et les cellules endothéliales dérivées des tumeurs aux traitements conventionnels. Le chapitre II décrit la première partie de ce projet de doctorat. Nous avons tenté de déterminer si l’EGCG pourrait sensibiliser la réponse des GBM à l’irradiation (IR) et si des marqueurs moléculaires spécifiques sont impliqués. Nous avons documenté que les cellules U-87 étaient relativement radiorésistantes et que Survivin, une protéine inhibitrice de l’apoptose, pourrait être impliquée dans la radiorésistance des GBM. Aussi, nous avons démontré que le pré-traitement des cellules U-87 avec de l’EGCG pourrait annuler l’effet cytoprotecteur d’une surexpression de Survivin et potentialiser l’effet cytoréducteur de l’IR. Au chapitre III, nous avons caractérisé l’impact de l’IR sur la survie de cellules endothéliales microvasculaires cérébrales humaines (HBMEC) et nous avons déterminé si l’EGCG pouvait optimiser cet effet. Bien que les traitements individuels avec l’EGCG et l’IR diminuaient la survie des HBMEC, le traitement combiné diminuait de façon synergique la survie cellulaire. Nous avons documenté que le traitement combiné augmentait la mort cellulaire, plus spécifiquement la nécrose. Au chapitre IV, nous avons investigué l’impact de l’IR sur les fonctions angiogéniques des HBMEC résistantes à l’IR, notamment la prolifération cellulaire, la migration cellulaire en présence de facteurs de croissance dérivés des tumeurs cérébrales, et la capacité de tubulogenèse. La voie de signalisation des Rho a aussi été étudiée en relation avec les propriétés angiogéniques des HBMEC radiorésistantes. Nos données suggèrent que l’IR altère significativement les propriétés angiogéniques des HBMEC. La réponse aux facteurs importants pour la croissance tumorale et l’angiogenèse ainsi que la tubulogenèse sont atténuées dans ces cellules. En conclusion, ce projet de doctorat confirme les propriétés cytoréductrices de l’IR sur les gliomes malins et propose un nouveau mécanisme pour expliquer la radiorésistance des GBM. Ce projet documente pour la première fois l’effet cytotoxique de l’IR sur les HBMEC. Aussi, ce projet reconnaît l’existence de HBMEC radiorésistantes et caractérise leurs fonctions angiogéniques altérées. La combinaison de molécules naturelles anticancéreuses et antiangiogéniques telles que l’EGCG avec de la radiothérapie pourrait améliorer l’effet de l’IR sur les cellules tumorales et sur les cellules endothéliales associées, possiblement en augmentant la mort cellulaire. Cette thèse supporte l’intégration de nutriments avec propriétés anticancéreuses et antiangiogéniques dans le traitement des gliomes malins pour sensibiliser les cellules tumorales et endothéliales aux traitements conventionnels.
Resumo:
Some new transition metal complexes of the Schiff base quinoxaline-2-car boxalidene-2-aminophenol (HQAP) have been synthesized and characterized by elemental analyses, conductance and magnetic measurements and IR and UV-Visible spectral studies. The complexes have the following empirical formulae: [Mn(QAP121, [Fe(QAPl2C1I, [Co(QAPl21, [Ni(QAP121 and [Cu(QAP121. A tetrahedral structure has been assigned for the manganese(=), cobalt(II1, nickel(II1 and copper(II1 complexes. For the iron(IIIl complex an octahedral dimeric structure has been suggested
Resumo:
In this thesis we report the synthsis and characterisation of new transition metal complexes of Pd(II),Cu(II),Ru(II) and Ir(III) of Schiff bases derived from quinoxaline-2-carboxaldehyde/3-hydroxyquinoxaline-2-carboxaldehyde and 5-aminoindazole.6-aminoindazole or 8-aminoquinoline.The complexes have been characterised by spectral and analytical data.Pd(II) and Cu(II) form square planar complexes and Ru(III) and Ir(III) form ctahedral complexes with these Schiff bases.The DNA binding properties of theses synthesised complexes have been studied by various methods including electronic absoption spectroscopy,cyclic voltammetry,different pulse voltammetry and circular dichroism spectra were used.Gel electrophoresis experiments were also performed to investigate the DNA cleavage of theses complexes.Furthermore Ru(III) and Ir(III) complexes find application as oxidation and hydogenation catalsts. The studies on catalytic activities has been presented.The metal complexes presented in this thesis assure significance as they contribute to the development of new DNA binding agents and antibacterial and anticancer drugs.
Resumo:
The unusual coordination modes of semicarbazones when bound to metals, the wide applications and structural diversity of metal complexes of semicarbazones provoked us to synthesize and characterize the tridentate ONO and NNO-donor semicarbazones and their transition metal complexes. This work is focused on the studies on complexes of three N4-phenylsemicarbazones synthesized by changing the carbonyl compounds. This work is concerned with the studies of two new semicarbazones, 2- formylpyridine-N4-phenylsemicarbazone (HL1) and 3-ethoxysalicylaldehyde- N4-phenylsemicarbazone (H2L2) and a reported semicarbazone 2-benzoylpyridine-N4-phenylsemicarbazone (HL3) [29]. The compositions of these semicarbazones were determined by the CHN analyses and IR, UV and NMR spectral studies were used for the characterization of these compounds. The molecular structure of 3-ethoxysalicylaldehyde-N4-phenylsemicarbazone (H2L2) was obtained by single crystal X-ray diffraction studies. Also, we have synthesized Cu(II), Cd(II), Zn(II) and Ni(II) complexes of these three semicarbazones. The complexes were characterized by various spectroscopic techniques, magnetic and conductivity studies. We could isolate single crystals of some complexes of all metals suitable for X-ray diffraction studies. This thesis is divided into six chapters.
Resumo:
A new semicarbazone, HL has been synthesized from quinoline-2-carboxaldehyde and N4-phenyl-3- semicarbazide and structurally and spectrochemically characterized. 1H NMR, 13C NMR, IR and electronic spectra of the compound are studied. The existence of keto form in the solid state is supported by the crystal structure and IR data. The compound crystallizes into an orthorhombic space group P212121. Intra and intermolecular hydrogen bonding interactions facilitates unit cell packing in the crystal lattice
Resumo:
Th(BrO3)3·H2O single crystals were grown from its aqueous solution at room temperature. Single crystal XRD, Raman and FTIR techniques were used to investigate the crystal structure. The crystal structure was solved by Patterson method. The as grown crystals are in monoclinic system with space group P21/c. The unit cell parameters are a = 12.8555(18) Å, b = 7.8970(11) Å, c = 9.0716(10) Å, = 90°, = 131.568° and = 90° and unit cell volume is 689.1(2) Å3. Z = 8, R factor is 5.9. The Raman and FTIR studies indicate the lowering of symmetry of bromate anion from C3V to C1. Hydrogen bonds with varying strengths are present in the crystal. The centrosymmetric space group P21/c of the crystal is confirmed by the non-coincidence of majority of Raman and IR bands
Resumo:
The first part of this work presents an accurate analysis of the most relevant 3D registration techniques, including initial pose estimation, pairwise registration and multiview registration strategies. A new classification has been proposed, based on both the applications and the approach of the methods that have been discussed. The main contribution of this thesis is the proposal of a new 3D multiview registration strategy. The proposed approach detects revisited regions obtaining cycles of views that are used to reduce the inaccuracies that may exist in the final model due to error propagation. The method takes advantage of both global and local information of the registration process, using graph theory techniques in order correlate multiple views and minimize the propagated error by registering the views in an optimal way. The proposed method has been tested using both synthetic and real data, in order to show and study its behavior and demonstrate its reliability.
Resumo:
Mineralised organic remains (including apple pips and cereal grains) collected during the ongoing excavations of Insula IX at the Roman town of Silchester, Hampshire have been analysed by a combination of SEM-EDX, powder XRD and IR spectroscopy. The experiments included mapping experiments using spatially resolved versions of each technique. IR and powder XRD mapping have been carried out utilising the synchrotron source at The Daresbury Laboratory oil stations 11.1 and 9.6. It is concluded that these samples are preserved by rapid mineralisation in the carbonate-substituted calcium phosphate mineral, dahllite. The rapid mineralisation leads to excellent preservation of the samples and a small crystal size. The value of IR spectroscopy in studying materials like this where the crystal size is small is demonstrated. A comparison is made between the excellent preservation seen in this context and the much poorer preservation of mineralised remains seen in Context 5276 or Cesspit 5251. Comments on the possible mechanism of mineralisation of these samples are made. (C) 2008 Elsevier B.V.. All rights reserved.
Resumo:
Asynchronous Optical Sampling (ASOPS) [1,2] and frequency comb spectrometry [3] based on dual Ti:saphire resonators operated in a master/slave mode have the potential to improve signal to noise ratio in THz transient and IR sperctrometry. The multimode Brownian oscillator time-domain response function described by state-space models is a mathematically robust framework that can be used to describe the dispersive phenomena governed by Lorentzian, Debye and Drude responses. In addition, the optical properties of an arbitrary medium can be expressed as a linear combination of simple multimode Brownian oscillator functions. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing the recorded THz transients in the time or frequency domain will be outlined [4,5]. Since a femtosecond duration pulse is capable of persistent excitation of the medium within which it propagates, such approach is perfectly justifiable. Several de-noising routines based on system identification will be shown. Furthermore, specifically developed apodization structures will be discussed. These are necessary because due to dispersion issues, the time-domain background and sample interferograms are non-symmetrical [6-8]. These procedures can lead to a more precise estimation of the complex insertion loss function. The algorithms are applicable to femtosecond spectroscopies across the EM spectrum. Finally, a methodology for femtosecond pulse shaping using genetic algorithms aiming to map and control molecular relaxation processes will be mentioned.
Resumo:
The synthesis of a series of poly(aromatic amide) dendrimers up to the second generation is described herein. The AB, building block used throughout the synthesis of the dendrimers was the allyl ester of 3,5-diaminocinnamic acid, which has been synthesized from 3,5-dinitrobenzoic acid in good yield with use of a four-step procedure. Dendron synthesis was achieved via a convergent approach with use of a sequence of deprotection/coupling steps. Two commercially available alcohols, L-menthol and citronellol, were coupled to the AB(2) monomer by using an alkyl diacid spacer and two core units; 1,7-diaminoheptane and tris(2-aminoethyl)amine have been used to produce the final dendrimers. Characterization was carried out by NMR and IR spectroscopies, MALDI-TOF mass spectrometry, GPC, and DSC. The novel monomer and dendritic derivatives exhibited a strong fluorescence emission in the visible region (lambda approximate to 500 nm) of the spectrum and a weak emission in the near-infrared (lambda approximate to 850 nm) upon excitation in the near-UV region. The fluorescence emission characteristics were found to be solvent and dendrimer generation dependent.
Resumo:
Mineralised organic remains (including apple pips and cereal grains) collected during the ongoing excavations of Insula IX at the Roman town of Silchester, Hampshire have been analysed by a combination of SEM-EDX, powder XRD and IR spectroscopy. The experiments included mapping experiments using spatially resolved versions of each technique. IR and powder XRD mapping have been carried out utilising the synchrotron source at The Daresbury Laboratory oil stations 11.1 and 9.6. It is concluded that these samples are preserved by rapid mineralisation in the carbonate-substituted calcium phosphate mineral, dahllite. The rapid mineralisation leads to excellent preservation of the samples and a small crystal size. The value of IR spectroscopy in studying materials like this where the crystal size is small is demonstrated. A comparison is made between the excellent preservation seen in this context and the much poorer preservation of mineralised remains seen in Context 5276 or Cesspit 5251. Comments on the possible mechanism of mineralisation of these samples are made. (C) 2008 Elsevier B.V.. All rights reserved.
Resumo:
A series of half-sandwich bis(phosphine) ruthenium acetylide complexes [Ru(C CAr)(L-2)Cp'] (Ar = phenyl, p-tolyl, 1-naphthyl, 9-anthryl; L2 = (PPh3)(2), Cp' = Cp; L-2 = dppe; Cp' = Cp*) have been examined using electrochemical and spectroelectrochemical methods. One-electron oxidation of these complexes gave the corresponding radical cations [Ru(C CAr)(L2)Cp'](+). Those cations based on Ru(dppe)Cp*, or which feature a para-tolyl acetylide substituent, are more chemically robust than examples featuring the Ru(PPh3)(2)Cp moiety, permitting good quality UV-Vis-NIR and IR spectroscopic data to be obtained using spectroelectrochemical methods. On the basis of TD DFT calculations, the low energy (NIR) absorption bands in the experimental electronic spectra for most of these radical cations are assigned to transitions between the beta-HOSO and beta-LUSO, both of which have appreciable metal d and ethynyl pi character. However, the large contribution from the anthryl moiety to the frontier orbitals of [Ru(C CC14H9)(L2)CP'](+) suggests compounds containing this moiety should be described as metal-stabilised anthryl radical cations.
Resumo:
Bonding, photochemical and electrochemical properties of the clusters [Ru-3(CO)(8)(mu-CO)(2)(alpha-diimine)] (alpha-diimine=2,2'-bipyridine (1), 4,4'-dimethyl-2,2'-bipyridine (2) and 2,2'-bipyrimidine (3)) are strongly influenced by the presence of bridging carbonyl ligands. Irradiation at 471 nm initially results in the population of a sigma(Ru-3)pi*(alpha-diimine) excited state. From this state, fast decay takes place to the optically hardly directly accessible pi(Ru/mu-CO) pi*(alpha-diimine) lowest excited state. These assignments agree with theoretical (TD-DFT) results, resonance Raman and picosecond time-resolved infrared spectra. The involvement of the bridging carbonyl ligands in the electron transfer increases the energetic barrier for the formation of open-structure photoproducts such as biradicals and zwitterions. Zwitterions were therefore only obtained in strongly coordinating media such as pyridine at 250 K. The bridging carbonyl ligands also stabilize the radical anions produced upon one-electron reduction of the clusters [Ru-3(CO)(8)(mu-CO)(2)(alpha-diimine)] and observed with cyclic voltammetry, EPR and IR spectroelectrochemistry (for alpha-diimine=2,2'-bipyrimidine). In contrast, open-triangle intermediates formed along the reduction path to [Ru(CO)(2)(alpha-diimine)](n) and [Ru-2(CO)(8)](2-) are more reactive than their triosmium analogues.