958 resultados para REVERSE TRANSCRIPTION-PCR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) of regenerating urodele limbs have been suggested to play crucial roles in the process of the dedifferentiation of cells in the damaged tissues and the ensuing blastema formation because the activation of MMPs is an early and conspicuous event occurring in the amputated limb. MMP cDNAs were cloned as products of the reverse transcription-PCR from cDNA libraries of newt limbs, and their structures were characterized. Three cDNAs encoding newt MMPs (2D-1, 2D-19, and 2D-24) have been cloned from second day postamputation regenerating limbs, and a cDNA (EB-1) was cloned from early bud-stage regenerating limbs. These cDNAs included the full-length coding regions. The deduced amino acid sequences of 2D-1, 2D-19, 2D-24, and EB-1 had a homology with mammalian MMP9, MMP3/10, MMP3/10, and MMP13, respectively. The basic motif of these newt MMP genes was similar to mammalian counterparts and contained regions encoding a putative signal sequence, a propeptide, an active site with three zinc-binding histidine residues, a calcium-binding domain, a hemopexin region, and three key cysteine residues. However, some unique molecular evolutionary features were also found in the newt MMPs. cDNAs of 2D-19 and 2D-24 contained a specific insertion and deletion, respectively. The insertion of 2D-19 is threonine-rich, similar to the threonine cluster found in the collagenase-like sea urchin hatching enzyme. Northern blot analysis showed that the expression levels of the newt MMPs were dramatically increased after amputation, suggesting that they play an important role(s) in tissue remodeling of the regenerating limb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two structurally unrelated chemicals, aflatoxin B1 and propane sultone, transformed human foreskin cells to a stage of anchorage-independent growth. Isolation from agar and repopulation in monolayer culture of these transformed cells was followed by transfection with a cDNA library, which resulted in cells that exhibited an altered epithelioid morphology. Chemically transformed/nontransfected cells and transfected normal cells did not undergo a significant morphological change. These epithelioid-appearing, transfected cells, when inoculated into nude mice, form progressively growing tumors. The tumors are histopathologically interpreted as carcinomas. All of the first generation tumors in the surrogate hosts exhibited characteristic rates of growth similar to those of transplants of spontaneous human tumors. In the second generation of tumor xenografts, the progressively growing tumors derived from the transfected cells exhibited a more rapid rate of growth. Southern analysis and reverse transcription PCR confirmed that a 1.3-kb genetic element was integrated into the genome and was actively being transcribed. Examination of the metaphase chromosomes in normal human cells revealed that the genetic element responsible for this conversion was located at site 31-32 of the q arm of chromosome 7. The DNA sequence of this 1.3-kb genetic element contains a coding region for 79 amino acids and a long 3'-untranslated region and appears to be identical to CATR1.3 isolated from tumors produced by methyl methanesulfonate-converted, nontransplantable human tumor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparison of immune responses to infection by a pathogenic or a nonpathogenic immunodeficiency virus in macaques may provide insights into pathogenetic events leading to simian AIDS. This work is aimed at exploring cytokine expression during infection by simian immunodeficiency virus (SIV). We used semiquantitative reverse transcription-PCR to monitor interleukin (IL)-2/interferon (IFN)-gamma (Th1-like), and IL-4/IL-10 (Th2-like) expression in unmanipulated peripheral blood mononuclear cells (PBMCs), during the acute phase of infection of eight cynomolgus macaques (Macaca fascicularis) with a pathogenic primary isolate of SIVmac251 (full-length nef), and of four other cynomolgus macaques by an attenuated molecular clone of SIVmac251 (nef-truncated). All the monkeys became infected, as clearly shown by the presence of infected PBMCs and by seroconversion. Nevertheless, PBMC-associated virus loads and p27 antigenemia in monkeys infected by the attenuated virus clone remained lower than those observed in animals infected with the pathogenic SIVmac251 isolate. A rise of IL-10 mRNA expression occurred in both groups of monkeys coincident with the peak of viral replication. In monkeys infected with the pathogenic SIVmac251, IL-2, IL-4, and IFN-gamma mRNAs were either weakly detectable or undetectable. On the contrary, animals infected by the attenuated virus exhibited an overexpression of these cytokine mRNAs during the first weeks after inoculation. The lack of expression of these cytokines in monkeys infected with the pathogenic primary isolate may reflect early immunodeficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular ATP exerts pronounced biological actions in virtually every organ or tissue that has been studied. In the central and peripheral nervous system, ATP acts as a fast excitatory transmitter in certain synaptic pathways [Evans, R.J., Derkach, V. & Surprenant, A. (1992) Nature (London) 357, 503-505; Edwards, F.A., Gigg, A.J. & Colquhoun, D. (1992) Nature (London) 359, 144-147]. Here, we report the cloning and characterization of complementary DNA from rat brain, encoding an additional member (P2X4) of the emerging multigenic family of ligand-gated ATP channels, the P2X receptors. Expression in Xenopus oocytes gives an ATP-activated cation-selective channel that is highly permeable to Ca2+ and whose sensitivity is modulated by extracellular Zn2+. Surprisingly, the current elicited by ATP is almost insensitive to the common P2X antagonist suramin. In situ hybridization reveals the expression of P2X4 mRNA in central nervous system neurons. Northern blot and reverse transcription-PCR (RT-PCR) analysis demonstrate a wide distribution of P2X4 transcripts in various tissues, including blood vessels and leukocytes. This suggests that the P2X4 receptor might mediate not only ATP-dependent synaptic transmission in the central nervous system but also a wide repertoire of biological responses in diverse tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the cortex fast excitatory synaptic currents onto excitatory pyramidal neurons and inhibitory nonpyramidal neurons are mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors exhibiting cell-type-specific differences in their kinetic properties. AMPA receptors consist of four subunits (GluR1-4), each existing as two splice variants, flip and flop, which critically affect the desensitization properties of receptors expressed in heterologous systems. Using single cell reverse transcription PCR to analyze the mRNA of AMPA receptor subunits expressed in layers I-III neocortical neurons, we find that 90% of the GluR1-4 in nonpyramidal neurons are flop variants, whereas 92% of the GluR1-4 in pyramidal neurons are flip variants. We also find that nonpyramidal neurons predominantly express GluR1 mRNA (GluR1/GluR1-4 = 59%), whereas pyramidal neurons contain mainly GluR2 mRNA (GluR2/GluR1-4 = 59%). However, the neuron-type-specific splicing is exhibited by all four AMPA receptor subunits. We suggest that the predominance of the flop variants contributes to the faster and more extensive desensitization in nonpyramidal neurons, compared to pyramidal cells where flip variants are dominant. Alternative splicing of AMPA receptors may play an important role in regulating synaptic function in a cell-type-specific manner, without changing permeation properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report demonstrates that the investigational prostatic carcinoma marker known as the prostate-specific membrane antigen (PSM) possesses hydrolytic activity with the substrate and pharmacologic properties of the N-acetylated alpha-linked acidic dipeptidase (NAALADase). NAALADase is a membrane hydrolase that has been characterized in the mammalian nervous system on the basis of its catabolism of the neuropeptide N-acetylaspartylglutamate (NAAG) to yield glutamate and N-acetylaspartate and that has been hypothesized to influence glutamatergic signaling processes. The immunoscreening of a rat brain cDNA expression library with anti-NAALADase antisera identified a 1428-base partial cDNA that shares 86% sequence identity with 1428 bases of the human PSM cDNA [Israeli, R. S., Powell, C. T., Fair, W. R. & Heston, W.D.W. (1993) Cancer Res. 53, 227-230]. A cDNA containing the entire PSM open reading frame was subsequently isolated by reverse transcription-PCR from the PSM-positive prostate carcinoma cell line LNCaP. Transient transfection of this cDNA into two NAALADase-negative cell lines conferred NAAG-hydrolyzing activity that was inhibited by the NAALADase inhibitors quisqualic acid and beta-NAAG. Thus we demonstrate a PSM-encoded function and identify a NAALADase-encoding cDNA. Northern analyses identify at least six transcripts that are variably expressed in NAALADase-positive but not in NAALADase-negative rat tissues and human cell lines; therefore, PSM and/or related molecular species appear to account for NAAG hydrolysis in the nervous system. These results also raise questions about the role of PSM in both normal and pathologic prostate epithelial-cell function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HLA-G is a nonclassical class I major histocompatibility complex molecule with a restricted pattern of expression that includes the placental extravillus cytotrophoblast cells in direct contact with maternal tissues. Circumstantial evidence suggests that HLA-G may play a role in protection of the semiallogeneic human fetus. We examined whether HLA-G is expressed during the critical period of preimplantation human development and whether expression of this molecule could be correlated with the cleavage rate of embryos. Using reverse transcription PCR on surplus human embryos and unfertilized oocytes from patients undergoing in vitro fertilization we detected HLA-G heavy chain mRNA in 40% of 148 of blastocysts tested. The presence of HLA-G mRNA was also detected in unfertilized oocytes and in early embryos, but not in control cumulus oophorus cells. beta 2-Microglobulin mRNA was also found in those embryos expressing HLA-G. In concordance with our mRNA data, a similar proportion of embryos stained positive for HLA-G utilizing a specific monoclonal antibody. Interestingly, expression of HLA-G mRNA was associated with an increased cleavage rate, as compared to embryos lacking HLA-G transcript. Thus, HLA-G could be a functional homologue of the mouse Qa-2 antigen, which has been implicated in differences in the rate of preimplantation embryo development. To our knowledge, the presence of HLA-G mRNA and protein in human preimplantation embryos and oocytes has not been reported previously. The correlation of HLA-G mRNA expression with cleavage rate suggests that this molecule may play an important role in human pre-embryo development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ISG15 is a 15-kDa protein of unique primary amino acid sequence, which is transcriptionally regulated by interferon (IFN) alpha and IFN-beta. Because it is synthesized in many cell types and secreted from human monocytes and lymphocytes, we postulated that ISG15 might act to modulate immune cell function. ISG15 stimulated B-depleted lymphocyte proliferation in a dose-dependent manner with significant proliferation induced by amounts of ISG15 as low as 1 ng/ml (58 pM). Maximal stimulation of [3H]thymidine incorporation by B-depleted lymphocytes occurred at 6-7 days. Immunophenotyping of ISG15-treated B-depleted lymphocyte cultures indicated a 26-fold expansion of natural killer (NK) cells (CD56+). In cytotoxicity assays, ISG15 was a potent inducer of cytolytic activity directed against both K562 (100 lytic units per 10(6) cells) and Daudi (80 lytic units per 10(6) cells) tumor cell targets, indicating that ISG15 enhanced lymphokine-activated killer-like activity. ISG15-induced NK cell proliferation required coculturing of T and NK cells, suggesting that soluble factor(s) were required. Measurement of ISG15-treated cell culture supernatants for cytokines indicated production of IFN-gamma (> 700 units/ml). No interleukin 2 or interleukin 12 was detected. IFN-gamma itself failed to stimulate lymphocyte proliferation and lymphokine-activated killer cell activation. Further, induced expression of IFN-gamma mRNA was detected by reverse transcription-PCR in T lymphocytes after ISG15 treatment but not in NK cells. Enhancement of NK cell proliferation, augmentation of non-major histocompatibility complex-restricted cytotoxicity, and induction of IFN-gamma from T cells identify ISG15 as a member of the cytokine cascade and suggest that it may be responsible for amplifying and directing some of the immunomodulatory effects of IFN-alpha or IFN-beta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the human phosphofructokinase muscle subunit gene (PFKM) are known to cause myopathy classified as glycogenosis type VII (Tarui disease). Previously described molecular defects include base substitutions altering encoded amino acids or resulting in abnormal splicing. We report a mutation resulting in phosphofructokinase deficiency in three patients from an Ashkenazi Jewish family. Using a reverse transcription PCR assay, PFKM subunit transcripts differing by length were detected in skeletal muscle tissue of all three affected subjects. In the longer transcript, an insertion of 252 nucleotides totally homologous to the structure of the 10th intron of the PFKM gene was found separating exon 10 from exon 11. In addition, two single base transitions were identified by direct sequencing: [exon 6; codon 95; CGA (Arg) to TGA (stop)] and [exon 7; codon 172; ACC (Thr) to ACT (Thr)] in either transcript. Single-stranded conformational polymorphism and restriction enzyme analyses confirmed the presence of these point substitutions in genomic DNA and strongly suggested homozygosity for the pathogenic allele. The nonsense mutation at codon 95 appeared solely responsible for the phenotype in these patients, further expanding genetic heterogeneity of Tarui disease. Transcripts with and without intron 10 arising from identical mutant alleles probably resulted from differential pre-mRNA processing and may represent a novel message from the PFKM gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recoverin is a member of the EF-hand family of calcium-binding proteins involved in the transduction of light by vertebrate photoreceptors. Recoverin also was identified as an autoantigen in the degenerative disease of the retina known as cancer-associated retinopathy (CAR), a paraneoplastic syndrome whereby immunological events lead to the degeneration of photoreceptors in some individuals with cancer. In this study, we demonstrate that recoverin is expressed in the lung tumor of a CAR patient but not in similar tumors obtained from individuals without the associated retinopathy. Recoverin was identified intially by Western blot analysis of the CAR patient's biopsy tissue by using anti-recoverin antibodies generated against different regions of the recoverin molecule. In addition, cultured cells from the biopsy tissue expressed recoverin, as demonstrated by reverse transcription-PCR using RNA extracted from the cells. The immunodominant region of recoverin also was determined in this study by a solid-phase immunoassay employing overlapping heptapeptides encompassing the entire recoverin sequence. Two linear stretches of amino acids (residues 64-70, Lys-Ala-Tyr-Ala-Gln-His-Val; and 48-52, Gln-Phe-Gln-Ser-Ile) made up the major determinants. One of the same regions of the recoverin molecule (residues 64-70) also was uniquely immunopathogenic, causing photoreceptor degeneration upon immunization of Lewis rats with the corresponding peptide. These data demonstrate that the neural antigen recoverin more than likely is responsible for the immunological events associated with vision loss in some patients with cancer. These data also establish CAR as one of the few autoimmune-mediated diseases for which the specific self-antigen is known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A G protein-coupled receptor for the pineal hormone melatonin was recently cloned from mammals and designated the Mel1a melatonin receptor. We now report the cloning of a second G protein-coupled melatonin receptor from humans and designate it the Mel1b melatonin receptor. The Mel1b receptor cDNA encodes a protein of 362 amino acids that is 60% identical at the amino acid level to the human Mel1a receptor. Transient expression of the Mel1b receptor in COS-1 cells results in high-affinity 2-[125I]iodomelatonin binding (Kd = 160 +/- 30 pM). In addition, the rank order of inhibition of specific 2-[125I]iodomelatonin binding by eight ligands is similar to that exhibited by the Mel1a melatonin receptor. Functional studies of NIH 3T3 cells stably expressing the Mel1b melatonin receptor indicate that it is coupled to inhibition of adenylyl cyclase. Comparative reverse transcription PCR shows that the Mel1b melatonin receptor is expressed in retina and, to a lesser extent, brain. PCR analysis of human-rodent somatic cell hybrids maps the Mel1b receptor gene (MTNR1B) to human chromosome 11q21-22. The Mel1b melatonin receptor may mediate the reported actions of melatonin in retina and participate in some of the neurobiological effects of melatonin in mammals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine the role of complement components as regulators of the expression of endothelial adhesive molecules in response to immune complexes (ICs), we determined whether ICs stimulate both endothelial adhesiveness for leukocytes and expression of E-selectin and intercellular and vascular cell adhesion molecules 1 (ICAM-1 and VCAM-1). We found that ICs [bovine serum albumin (BSA)-anti-BSA] stimulated endothelial cell adhesiveness for added leukocytes in the presence of complement-sufficient normal human serum (NHS) but not in the presence of heat-inactivated serum (HIS) or in tissue culture medium alone. Depletion of complement component C3 or C8 from serum did not prevent enhanced endothelial adhesiveness stimulated by ICs. In contrast, depletion of complement component C1q markedly inhibited IC-stimulated endothelial adhesiveness for leukocytes. When the heat-labile complement component C1q was added to HIS, the capacity of ICs to stimulate endothelial adhesiveness for leukocytes was completely restored. Further evidence for the possible role of C1q in mediating the effect of ICs on endothelial cells was the discovery of the presence of the 100- to 126-kDa C1q-binding protein on the surface of endothelial cells (by cytofluorography) and of message for the 33-kDa C1q receptor in resting endothelial cells (by reverse transcription-PCR). Inhibition of protein synthesis by cycloheximide blocked endothelial adhesiveness for leukocytes stimulated by either interleukin 1 or ICs in the presence of NHS. After stimulation with ICs in the presence of NHS, endothelial cells expressed increased numbers of adhesion molecules (E-selectin, ICAM-1, and VCAM-1). Endothelial expression of adhesion molecules mediated, at least in part, endothelial adhesiveness for leukocytes, since leukocyte adhesion was blocked by monoclonal antibodies directed against E-selectin. These studies show that ICs stimulate endothelial cells to express adhesive proteins for leukocytes in the presence of a heat-labile serum factor. That factor appears to be C1q.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elucidating the relevant genomic changes mediating development and evolution of prostate cancer is paramount for effective diagnosis and therapy. A putative dominant-acting nude mouse prostatic carcinoma tumor-inducing gene, PTI-1, has been cloned that is expressed in patient-derived human prostatic carcinomas but not in benign prostatic hypertrophy or normal prostate tissue. PTI-1 was detected by cotransfecting human prostate carcinoma DNA into CREF-Trans 6 cells, inducing tumors in nude mice, and isolating genes displaying increased expression in tumor-derived cells by using differential RNA display (DD). Screening a human prostatic carcinoma (LNCaP) cDNA library with a 214-bp DNA fragment found by DD permitted the cloning of a full-length 2.0-kb PTI-1 cDNA. Sequence analysis indicates that PTI-1 is a gene containing a 630-bp 5' sequence and a 3' sequence homologous to a truncated and mutated form of human elongation factor 1 alpha. In vitro translation demonstrates that the PTI-1 cDNA encodes a predominant approximately 46-kDa protein. Probing Northern blots with a DNA fragment corresponding to the 5' region of PTI-1 identifies multiple PTI-1 transcripts in RNAs from human carcinoma cell lines derived from the prostate, lung, breast, and colon. In contrast, PTI-1 RNA is not detected in human melanoma, neuroblastoma, osteosarcoma, normal cerebellum, or glioblastoma multiforme cell lines. By using a pair of primers recognizing a 280-bp region within the 630-bp 5' PTI-1 sequence, reverse transcription-PCR detects PTI-1 expression in patient-derived prostate carcinomas but not in normal prostate or benign hypertrophic prostate tissue. In contrast, reverse transcription-PCR detects prostate-specific antigen expression in all of the prostate tissues. These results indicate that PTI-1 may be a member of a class of oncogenes that could affect protein translation and contribute to carcinoma development in human prostate and other tissues. The approaches used, rapid expression cloning with the CREF-Trans 6 system and the DD strategy, should prove widely applicable for identifying and cloning additional human oncogenes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Arg8]vasopressin (AVP) stimulates adrenocorticotropic hormone release from the anterior pituitary by acting on the V1b AVP receptor. This receptor can be distinguished from the vascular/hepatic V1a and renal V2 AVP receptors by its differential binding affinities for structural analogous of AVP. Recent studies have shown that the cloned V1a and V2 receptors are structurally related. We have isolated a clone encoding the V1b receptor from a rat pituitary cDNA library using polymerase chain reaction (PCR)-based methodology. The rat V1b receptor is a protein of 421 amino acids that has 37-50% identity with the V1a and V2 receptors. Homology is particularly high in the seven putative membrane-spanning domains of these guanine nucleotide-binding protein-coupled receptors. Expression of the recombinant receptor in mammalian cells shows the same binding specificity for AVP agonists and antagonists as the rat pituitary V1b receptor. AVP-stimulated phosphotidylinositol hydrolysis and intracellular Ca2+ mobilization in Chinese hamster ovary or COS-7 cells expressing the cloned receptor suggest second messenger signaling through phospholipase C. RNA blot analysis, reverse transcription PCR, and in situ hybridization studies reveal that V1b receptor mRNA is expressed in the majority of pituitary corticotropes as well as in multiple brain regions and a number of peripheral tissues, including kidney, thymus, heart, lung, spleen, uterus, and breast. Thus, the V1b receptor must mediate some of the diverse biological effects of AVP in the pituitary as well as other organs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scl gene encodes a basic-helix-loop-helix transcription factor which was identified through its involvement in chromosomal translocations in T-cell leukemia. To elucidate its physiological role, scl was targeted in embryonic stem cells. Mice heterozygous for the scl null mutation were intercrossed and their offspring were genotyped. Homozygous mutant (scl-/-) pups were not detected in newborn litters, and analysis at earlier time points demonstrated that scl-/- embryos were dying around embryonic day 9.5. The scl-/- embryos were pale, edematous, and markedly growth retarded after embryonic day 8.75. Histological studies showed complete absence of recognizable hematopoiesis in the yolk sac of these embryos. Early organogenesis appeared to be otherwise normal. Culture of yolk sac cells of wild-type, heterozygous, and homozygous littermates confirmed the absence of hematopoietic cells in scl-/- yolk sacs. Reverse transcription PCR was used to examine the transcripts of several genes implicated in early hematopoiesis. Transcripts of GATA-1 and PU.1 transcription factors were absent from RNA from scl-/- yolk sacs and embryos. These results implicate scl as a crucial regulator of early hematopoiesis.