946 resultados para REGRESSION TREE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genomic sequences are fundamentally text documents, admitting various representations according to need and tokenization. Gene expression depends crucially on binding of enzymes to the DNA sequence at small, poorly conserved binding sites, limiting the utility of standard pattern search. However, one may exploit the regular syntactic structure of the enzyme's component proteins and the corresponding binding sites, framing the problem as one of detecting grammatically correct genomic phrases. In this paper we propose new kernels based on weighted tree structures, traversing the paths within them to capture the features which underpin the task. Experimentally, we and that these kernels provide performance comparable with state of the art approaches for this problem, while offering significant computational advantages over earlier methods. The methods proposed may be applied to a broad range of sequence or tree-structured data in molecular biology and other domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual localization in outdoor environments is often hampered by the natural variation in appearance caused by such things as weather phenomena, diurnal fluctuations in lighting, and seasonal changes. Such changes are global across an environment and, in the case of global light changes and seasonal variation, the change in appearance occurs in a regular, cyclic manner. Visual localization could be greatly improved if it were possible to predict the appearance of a particular location at a particular time, based on the appearance of the location in the past and knowledge of the nature of appearance change over time. In this paper, we investigate whether global appearance changes in an environment can be learned sufficiently to improve visual localization performance. We use time of day as a test case, and generate transformations between morning and afternoon using sample images from a training set. We demonstrate the learned transformation can be generalized from training data and show the resulting visual localization on a test set is improved relative to raw image comparison. The improvement in localization remains when the area is revisited several weeks later.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to knowledge gaps in relation to urban stormwater quality processes, an in-depth understanding of model uncertainty can enhance decision making. Uncertainty in stormwater quality models can originate from a range of sources such as the complexity of urban rainfall-runoff-stormwater pollutant processes and the paucity of observed data. Unfortunately, studies relating to epistemic uncertainty, which arises from the simplification of reality are limited and often deemed mostly unquantifiable. This paper presents a statistical modelling framework for ascertaining epistemic uncertainty associated with pollutant wash-off under a regression modelling paradigm using Ordinary Least Squares Regression (OLSR) and Weighted Least Squares Regression (WLSR) methods with a Bayesian/Gibbs sampling statistical approach. The study results confirmed that WLSR assuming probability distributed data provides more realistic uncertainty estimates of the observed and predicted wash-off values compared to OLSR modelling. It was also noted that the Bayesian/Gibbs sampling approach is superior compared to the most commonly adopted classical statistical and deterministic approaches commonly used in water quality modelling. The study outcomes confirmed that the predication error associated with wash-off replication is relatively higher due to limited data availability. The uncertainty analysis also highlighted the variability of the wash-off modelling coefficient k as a function of complex physical processes, which is primarily influenced by surface characteristics and rainfall intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A business process is often modeled using some kind of a directed flow graph, which we call a workflow graph. The Refined Process Structure Tree (RPST) is a technique for workflow graph parsing, i.e., for discovering the structure of a workflow graph, which has various applications. In this paper, we provide two improvements to the RPST. First, we propose an alternative way to compute the RPST that is simpler than the one developed originally. In particular, the computation reduces to constructing the tree of the triconnected components of a workflow graph in the special case when every node has at most one incoming or at most one outgoing edge. Such graphs occur frequently in applications. Secondly, we extend the applicability of the RPST. Originally, the RPST was applicable only to graphs with a single source and single sink such that the completed version of the graph is biconnected. We lift both restrictions. Therefore, the RPST is then applicable to arbitrary directed graphs such that every node is on a path from some source to some sink. This includes graphs with multiple sources and/or sinks and disconnected graphs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global demand for food, feed, energy and water poses extraordinary challenges for future generations. It is evident that robust platforms for the exploration of renewable resources are necessary to overcome these challenges. Within the multinational framework MultiBioPro we are developing biorefinery pipelines to maximize the use of plant biomass. More specifically, we use poplar and tobacco tree (Nicotiana glauca) as target crop species for improving saccharification, isoprenoid, long chain hydrocarbon contents, fiber quality, and suberin and lignin contents. The methods used to obtain these outputs include GC-MS, LC-MS and RNA sequencing platforms. The metabolite pipelines are well established tools to generate these types of data, but also have the limitations in that only well characterized metabolites can be used. The deep sequencing will allow us to include all transcripts present during the developmental stages of the tobacco tree leaf, but has to be mapped back to the sequence of Nicotiana tabacum. With these set-ups, we aim at a basic understanding for underlying processes and at establishing an industrial framework to exploit the outcomes. In a more long term perspective, we believe that data generated here will provide means for a sustainable biorefinery process using poplar and tobacco tree as raw material. To date the basal level of metabolites in the samples have been analyzed and the protocols utilized are provided in this article.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mixed species reforestation program known as the Rainforestation Farming system was undertaken in the Philippines to develop forms of farm forestry more suitable for smallholders than the simple monocultural plantations commonly used then. In this study, we describe the subsequent changes in stand structure and floristic composition of these plantations in order to learn from the experience and develop improved prescriptions for reforestation systems likely to be attractive to smallholders. We investigated stands aged from 6 to 11 years old on three successive occasions over a 6 year period. We found the number of species originally present in the plots as trees >5 cm dbh decreased from an initial total of 76 species to 65 species at the end of study period. But, at the same time, some new species reached the size class threshold and were recruited into the canopy layer. There was a substantial decline in tree density from an estimated stocking of about 5000 trees per ha at the time of planting to 1380 trees per ha at the time of the first measurement; the density declined by a further 4.9% per year. Changes in composition and stand structure were indicated by a marked shift in the Importance Value Index of species. Over six years, shade-intolerant species became less important and the native shade-tolerant species (often Dipterocarps) increased in importance. Based on how the Rainforestation Farming plantations developed in these early years, we suggest that mixed-species plantations elsewhere in the humid tropics should be around 1000 trees per ha or less, that the proportion of fast growing (and hence early maturing) trees should be about 30–40% of this initial density and that any fruit tree component should only be planted on the plantation margin where more light and space are available for crowns to develop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops a semiparametric estimation approach for mixed count regression models based on series expansion for the unknown density of the unobserved heterogeneity. We use the generalized Laguerre series expansion around a gamma baseline density to model unobserved heterogeneity in a Poisson mixture model. We establish the consistency of the estimator and present a computational strategy to implement the proposed estimation techniques in the standard count model as well as in truncated, censored, and zero-inflated count regression models. Monte Carlo evidence shows that the finite sample behavior of the estimator is quite good. The paper applies the method to a model of individual shopping behavior. © 1999 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing crowd counting algorithms rely on holistic, local or histogram based features to capture crowd properties. Regression is then employed to estimate the crowd size. Insufficient testing across multiple datasets has made it difficult to compare and contrast different methodologies. This paper presents an evaluation across multiple datasets to compare holistic, local and histogram based methods, and to compare various image features and regression models. A K-fold cross validation protocol is followed to evaluate the performance across five public datasets: UCSD, PETS 2009, Fudan, Mall and Grand Central datasets. Image features are categorised into five types: size, shape, edges, keypoints and textures. The regression models evaluated are: Gaussian process regression (GPR), linear regression, K nearest neighbours (KNN) and neural networks (NN). The results demonstrate that local features outperform equivalent holistic and histogram based features; optimal performance is observed using all image features except for textures; and that GPR outperforms linear, KNN and NN regression

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artist's Statement: These suspended shipping floats symbolise the artist's grandfather's home on Keriri (Hammond Island), where the trees are decorated with floats of all colours that have washed up on the beach. Across the entire Torres Strait, these floats, often from Asia, wash ashore and become decorative objects, strung from trees and hung from island shacks. Their vivid colours, and sometimes reflective glass surfaces, play against the lush tropical setting, while their re-use reflects the innovative character of island life. This arrangement of the floats represents the artist's family tree, which he has traced back six generations to Mer (Murray Island) and Keriri. The strings of orange floats represent his immediate family and direct lineage, each member of which is named on a float, with the totem of the family painted on the base. The remaining floats trace additional ancestry and spread further back through time and space, spanning the Torres Strait from west to east.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land-use regression (LUR) is a technique that can improve the accuracy of air pollution exposure assessment in epidemiological studies. Most LUR models are developed for single cities, which places limitations on their applicability to other locations. We sought to develop a model to predict nitrogen dioxide (NO2) concentrations with national coverage of Australia by using satellite observations of tropospheric NO2 columns combined with other predictor variables. We used a generalised estimating equation (GEE) model to predict annual and monthly average ambient NO2 concentrations measured by a national monitoring network from 2006 through 2011. The best annual model explained 81% of spatial variation in NO2 (absolute RMS error=1.4 ppb), while the best monthly model explained 76% (absolute RMS error=1.9 ppb). We applied our models to predict NO2 concentrations at the ~350,000 census mesh blocks across the country (a mesh block is the smallest spatial unit in the Australian census). National population-weighted average concentrations ranged from 7.3 ppb (2006) to 6.3 ppb (2011). We found that a simple approach using tropospheric NO2 column data yielded models with slightly better predictive ability than those produced using a more involved approach that required simulation of surface-to-column ratios. The models were capable of capturing within-urban variability in NO2, and offer the ability to estimate ambient NO2 concentrations at monthly and annual time scales across Australia from 2006–2011. We are making our model predictions freely available for research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental monitoring has become increasingly important due to the significant impact of human activities and climate change on biodiversity. Environmental sound sources such as rain and insect vocalizations are a rich and underexploited source of information in environmental audio recordings. This paper is concerned with the classification of rain within acoustic sensor re-cordings. We present the novel application of a set of features for classifying environmental acoustics: acoustic entropy, the acoustic complexity index, spectral cover, and background noise. In order to improve the performance of the rain classification system we automatically classify segments of environmental recordings into the classes of heavy rain or non-rain. A decision tree classifier is experientially compared with other classifiers. The experimental results show that our system is effective in classifying segments of environmental audio recordings with an accuracy of 93% for the binary classification of heavy rain/non-rain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Two more bodies, including a that of child discovered in a tree, were retrieved in the Lockyer Valley at the weekend, reinforcing the grisly complexity of the search for the missing."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To enhance the efficiency of regression parameter estimation by modeling the correlation structure of correlated binary error terms in quantile regression with repeated measurements, we propose a Gaussian pseudolikelihood approach for estimating correlation parameters and selecting the most appropriate working correlation matrix simultaneously. The induced smoothing method is applied to estimate the covariance of the regression parameter estimates, which can bypass density estimation of the errors. Extensive numerical studies indicate that the proposed method performs well in selecting an accurate correlation structure and improving regression parameter estimation efficiency. The proposed method is further illustrated by analyzing a dental dataset.