962 resultados para REACTOR PHYSICS
Resumo:
Particle physics studies highly complex processes which cannot be directly observed. Scientific realism claims that we are nevertheless warranted in believing that these processes really occur and that the objects involved in them really exist. This dissertation defends a version of scientific realism, called causal realism, in the context of particle physics. I start by introducing the central theses and arguments in the recent philosophical debate on scientific realism (chapter 1), with a special focus on an important presupposition of the debate, namely common sense realism. Chapter 2 then discusses entity realism, which introduces a crucial element into the debate by emphasizing the importance of experiments in defending scientific realism. Most of the chapter is concerned with Ian Hacking's position, but I also argue that Nancy Cartwright's version of entity realism is ultimately preferable as a basis for further development. In chapter 3,1 take a step back and consider the question whether the realism debate is worth pursuing at all. Arthur Fine has given a negative answer to that question, proposing his natural ontologica! attitude as an alternative to both realism and antirealism. I argue that the debate (in particular the realist side of it) is in fact less vicious than Fine presents it. The second part of my work (chapters 4-6) develops, illustrates and defends causal realism. The key idea is that inference to the best explanation is reliable in some cases, but not in others. Chapter 4 characterizes the difference between these two kinds of cases in terms of three criteria which distinguish causal from theoretical warrant. In order to flesh out this distinction, chapter 5 then applies it to a concrete case from the history of particle physics, the discovery of the neutrino. This case study shows that the distinction between causal and theoretical warrant is crucial for understanding what it means to "directly detect" a new particle. But the distinction is also an effective tool against what I take to be the presently most powerful objection to scientific realism: Kyle Stanford's argument from unconceived alternatives. I respond to this argument in chapter 6, and I illustrate my response with a discussion of Jean Perrin's experimental work concerning the atomic hypothesis. In the final part of the dissertation, I turn to the specific challenges posed to realism by quantum theories. One of these challenges comes from the experimental violations of Bell's inequalities, which indicate a failure of locality in the quantum domain. I show in chapter 7 how causal realism can further our understanding of quantum non-locality by taking account of some recent experimental results. Another challenge to realism in quantum mechanics comes from delayed-choice experiments, which seem to imply that certain aspects of what happens in an experiment can be influenced by later choices of the experimenter. Chapter 8 analyzes these experiments and argues that they do not warrant the antirealist conclusions which some commentators draw from them. It pays particular attention to the case of delayed-choice entanglement swapping and the corresponding question whether entanglement is a real physical relation. In chapter 9,1 finally address relativistic quantum theories. It is often claimed that these theories are incompatible with a particle ontology, and this calls into question causal realism's commitment to localizable and countable entities. I defend the commitments of causal realism against these objections, and I conclude with some remarks connecting the interpretation of quantum field theory to more general metaphysical issues confronting causal realism.
Resumo:
The aim of this article is to show not only what is the role played by eros in the Physics of the Ancient Stoicism but also to discover the meaning of the allegorical fellatio, a cosmogonal fellatio, which was introduced by Chrysippus in his Erotic Letters. The meaning of this intellectual boldness becomes quite clear if the texts are analyzed in accordance with the allegorical interpretation developed by the Stoics and when we also analyze the enodatio nominum of the word stóma.
Resumo:
We present a study about the influence of substrate temperature on deposition rate of hydrogenated amorphous silicon thin films prepared by rf glow discharge decomposition of pure silane gas in a capacitively coupled plasma reactor. Two different behaviors are observed depending on deposition pressure conditions. At high pressure (30 Pa) the influence of substrate temperature on deposition rate is mainly through a modification of gas density, in such a way that the substrate temperature of deposition rate is similar to pressure dependence at constant temperature. On the contrary, at low pressure (3 Pa), a gas density effect cannot account for the observed increase of deposition rate as substrate temperature rises above 450 K with an activation energy of 1.1 kcal/mole. In accordance with laser‐induced fluorescence measurements reported in the literature, this rise has been ascribed to an increase of secondary electron emission from the growing film surface as a result of molecular hydrogen desorption.
Resumo:
Highly transparent and stoichiometric boron nitride (BN) films were deposited on both electrodes (anode and cathode) of a radio-frequency parallel-plate plasma reactor by the glow discharge decomposition of two gas mixtures: B2H6-H2-NH3 and B2H6-N2. The chemical, optical, and structural properties of the films, as well as their stability under long exposition to humid atmosphere, were analyzed by x-ray photoelectron, infrared, and Raman spectroscopies; scanning and transmission electron microscopies; and optical transmittance spectrophotometry. It was found that the BN films grown on the anode using the B2H6-H2-NH3 mixture were smooth, dense, adhered well to substrates, and had a textured hexagonal structure with the basal planes perpendicular to the film surface. These films were chemically stable to moisture, even after an exposition period of two years. In contrast, the films grown on the anode from the B2H6-N2 mixture showed tensile stress failure and were very unstable in the presence of moisture. However, the films grown on the cathode from B2H6-H2-NH3 gases suffered from compressive stress failure on exposure to air; whereas with B2H6-N2 gases, adherent and stable cathodic BN films were obtained with the same crystallographic texture as anodic films prepared from the B2H6-H2-NH3 mixture. These results are discussed in terms of the origin of film stress, the effects of ion bombardment on the growing films, and the surface chemical effects of hydrogen atoms present in the gas discharge.
Resumo:
A general formalism is set up to analyze the response of an arbitrary solid elastic body to an arbitrary metric gravitational wave (GW) perturbation, which fully displays the details of the interaction antenna wave. The formalism is applied to the spherical detector, whose sensitivity parameters are thereby scrutinized. A multimode transfer function is defined to study the amplitude sensitivity, and absorption cross sections are calculated for a general metric theory of GW physics. Their scaling properties are shown to be independent of the underlying theory, with interesting consequences for future detector design. The GW incidence direction deconvolution problem is also discussed, always within the context of a general metric theory of the gravitational field.
Resumo:
As opposed to objective definitions in soil physics, the subjective term “soil physical quality” is increasingly found in publications in the soil physics area. A supposed indicator of soil physical quality that has been the focus of attention, especially in the Brazilian literature, is the Least Limiting Water Range (RLL), translated in Portuguese as "Intervalo Hídrico Ótimo" or IHO. In this paper the four limiting water contents that define RLLare discussed in the light of objectively determinable soil physical properties, pointing to inconsistencies in the RLLdefinition and calculation. It also discusses the interpretation of RLL as an indicator of crop productivity or soil physical quality, showing its inability to consider common phenological and pedological boundary conditions. It is shown that so-called “critical densities” found by the RLL through a commonly applied calculation method are questionable. Considering the availability of robust models for agronomy, ecology, hydrology, meteorology and other related areas, the attractiveness of RLL as an indicator to Brazilian soil physicists is not related to its (never proven) effectiveness, but rather to the simplicity with which it is dealt. Determining the respective limiting contents in a simplified manner, relegating the study or concern on the actual functioning of the system to a lower priority, goes against scientific construction and systemic understanding. This study suggests a realignment of the research in soil physics in Brazil with scientific precepts, towards mechanistic soil physics, to replace the currently predominant search for empirical correlations below the state of the art of soil physics.
Resumo:
ABSTRACT Particle density, gravimetric and volumetric water contents and porosity are important basic concepts to characterize porous systems such as soils. This paper presents a proposal of an experimental method to measure these physical properties, applicable in experimental physics classes, in porous media samples consisting of spheres with the same diameter (monodisperse medium) and with different diameters (polydisperse medium). Soil samples are not used given the difficulty of working with this porous medium in laboratories dedicated to teaching basic experimental physics. The paper describes the method to be followed and results of two case studies, one in monodisperse medium and the other in polydisperse medium. The particle density results were very close to theoretical values for lead spheres, whose relative deviation (RD) was -2.9 % and +0.1 % RD for the iron spheres. The RD of porosity was also low: -3.6 % for lead spheres and -1.2 % for iron spheres, in the comparison of procedures – using particle and porous medium densities and saturated volumetric water content – and monodisperse and polydisperse media.