949 resultados para Quadrotor. Variable reference control. Position and orientation control. UAV s


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: We compared motor and movement thresholds to transcranial magnetic stimulation (TMS) in healthy subjects and investigated the effect of different coil positions on thresholds and MEP (motor-evoked potential) amplitudes. METHODS: The abductor pollicis brevis (APB) 'hot spot' and a standard scalp position were stimulated. APB resting motor threshold (APB MEP-MT) defined by the '5/10' electrophysiological method was compared with movement threshold (MOV-MT), defined by visualization of movements. Additionally, APB MEP-MTs were evaluated with the '3/6 method,' and MEPs were recorded at a stimulation intensity of 120% APB MEP-MT at each position. RESULTS: APB MEP-MTs were significantly lower by stimulation of the 'hot spot' than of the standard position, and significantly lower than MOV-MTs (n=15). There were no significant differences between the '3/6' and the '5/10' methods, or between APB MEP amplitudes by stimulating each position at 120% APB MEP-MT. CONCLUSIONS: Coil position and electrophysiological monitoring influenced motor threshold determinations. Performing 6 instead of 10 trials did not produce different threshold measurements. Adjustment of intensity according to APB MEP-MT at the stimulated position did not influence APB MEP amplitudes. SIGNIFICANCE: Standardization of stimulation positions, nomenclature and criteria for threshold measurements should be considered in design and comparison of TMS protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STATEMENT OF PROBLEM: A tapered implant with continuously changing threads purported to provide stable tissue support and allow immediate function has been developed. Treatment success and stabilization of supporting tissues over time require documentation. PURPOSE: The purpose of this prospective, randomized, controlled, multicenter study was to evaluate changes in bone level and soft tissue behavior between the novel implant (NobelActive/NA) and a standard tapered implant (NobelReplace Tapered Groovy/NR) with regard to immediate function. MATERIAL AND METHODS: A total of 177 patients randomly allocated to 3 treatment groups (2 different test implant groups: NA Internal (n=117; internal connection) and External (n=82), and 1 standard treatment group, NR (n=126)) received 325 implants. Implants were placed into healed sites, and all but 6 implants were immediately nonocclusally loaded. Clinical and radiographic evaluations of treatment success, crestal bone levels, and soft tissue changes were performed at the time of placement and after 3, 6, and 12 months. Log-Rank test was used to analyze the differences in survival rate. Marginal bone level was compared using the Kruskal-Wallis test and Mann-Whitney U-test (alpha=.05). RESULTS: One-year cumulative survival rates were comparable (96.6% for NA Internal; 96.3% for NA External; 97.6% for NR; P=.852; Log-Rank). Mean (SD) change in bone level was -0.95 mm (1.37) for NA Internal, -0.64 mm (0.97) for NA External, and -0.63 mm (1.18) for NR (P=.589; Kruskal-Wallis). Stable soft tissues and significantly increased papilla scores (P<.001; Wilcoxon signed-rank) were observed for all implant types. CONCLUSIONS: The novel implants showed high survival rates as well as stable bone and soft tissue levels after 1 year, and may be recommended for clinical use, even under immediate function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We seek to determine the relationship between threshold and suprathreshold perception for position offset and stereoscopic depth perception under conditions that elevate their respective thresholds. Two threshold-elevating conditions were used: (1) increasing the interline gap and (2) dioptric blur. Although increasing the interline gap increases position (Vernier) offset and stereoscopic disparity thresholds substantially, the perception of suprathreshold position offset and stereoscopic depth remains unchanged. Perception of suprathreshold position offset also remains unchanged when the Vernier threshold is elevated by dioptric blur. We show that such normalization of suprathreshold position offset can be attributed to the topographical-map-based encoding of position. On the other hand, dioptric blur increases the stereoscopic disparity thresholds and reduces the perceived suprathreshold stereoscopic depth, which can be accounted for by a disparity-computation model in which the activities of absolute disparity encoders are multiplied by a Gaussian weighting function that is centered on the horopter. Overall, the statement "equal suprathreshold perception occurs in threshold-elevated and unelevated conditions when the stimuli are equally above their corresponding thresholds" describes the results better than the statement "suprathreshold stimuli are perceived as equal when they are equal multiples of their respective threshold values."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE External beam radiation therapy is currently considered the most common treatment modality for intraocular tumors. Localization of the tumor and efficient compensation of tumor misalignment with respect to the radiation beam are crucial. According to the state of the art procedure, localization of the target volume is indirectly performed by the invasive surgical implantation of radiopaque clips or is limited to positioning the head using stereoscopic radiographies. This work represents a proof-of-concept for direct and noninvasive tumor referencing based on anterior eye topography acquired using optical coherence tomography (OCT). METHODS A prototype of a head-mounted device has been developed for automatic monitoring of tumor position and orientation in the isocentric reference frame for LINAC based treatment of intraocular tumors. Noninvasive tumor referencing is performed with six degrees of freedom based on anterior eye topography acquired using OCT and registration of a statistical eye model. The proposed prototype was tested based on enucleated pig eyes and registration accuracy was measured by comparison of the resulting transformation with tilt and torsion angles manually induced using a custom-made test bench. RESULTS Validation based on 12 enucleated pig eyes revealed an overall average registration error of 0.26 ± 0.08° in 87 ± 0.7 ms for tilting and 0.52 ± 0.03° in 94 ± 1.4 ms for torsion. Furthermore, dependency of sampling density on mean registration error was quantitatively assessed. CONCLUSIONS The tumor referencing method presented in combination with the statistical eye model introduced in the past has the potential to enable noninvasive treatment and may improve quality, efficacy, and flexibility of external beam radiotherapy of intraocular tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop statistical procedures for estimating shape and orientation of arbitrary three-dimensional particles. We focus on the case where particles cannot be observed directly, but only via sections. Volume tensors are used for describing particle shape and orientation, and we derive stereological estimators of the tensors. These estimators are combined to provide consistent estimators of the moments of the so-called particle cover density. The covariance structure associated with the particle cover density depends on the orientation and shape of the particles. For instance, if the distribution of the typical particle is invariant under rotations, then the covariance matrix is proportional to the identity matrix. We develop a non-parametric test for such isotropy. A flexible Lévy-based particle model is proposed, which may be analysed using a generalized method of moments in which the volume tensors enter. The developed methods are used to study the cell organization in the human brain cortex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper, we describe new robust methods of estimating cell shape and orientation in 3D from sections. The descriptors of 3D cell shape and orientation are based on volume tensors which are used to construct an ellipsoid, the Miles ellipsoid, approximating the average cell shape and orientation in 3D. The estimators of volume tensors are based on observations in several optical planes through sampled cells. This type of geometric sampling design is known as the optical rotator. The statistical behaviour of the estimator of the Miles ellipsoid is studied under a flexible model for 3D cell shape and orientation. In a simulation study, the lengths of the axes of the Miles ellipsoid can be estimated with CVs of about 2% if 100 cells are sampled. Finally, we illustrate the use of the developed methods in an example, involving neurons in the medial prefrontal cortex of rat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reference librarian's task is to translate the patron's question into one that can be answered with the library's resources. The first element of that task is to know what the patron wants; the second is to know what resources the library has and how to use them. Reference librarians must learn continuously throughout their careers, both because new resources become available, but also because patrons present questions requiring new resources. This article will focus on how to determine what kind of information the patron needs through the reference interview.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An astronomically calibrated timescale has recently been established [Hilgen, 1991, doi:10.1016/0012-821X(91)90082-S; doi:10.1016/0012-821X(91)90206-W] for the Pliocene and earliest Pleistocene based on the correlation of dominantly precession controlled sedimentary cycles (sapropels and carbonate cycles) in Mediterranean marine sequences to the precession time series of the astronomical solution of Berger and Loutre [1991, doi:10.1016/0277-3791(91)90033-Q ] (hereinafter referred to as Ber90). Here we evaluate the accuracy of this timescale by (1) comparing the sedimentary cycle patterns with 65°N summer insolation time series of different astronomical solutions and (2) a cross-spectral comparison between the obliquity-related components in the 65°N summer insolation curves and high-resolution paleoclimatic records derived from the same sections used to construct the timescale. Our results show that the carbonate cycles older than 3.5 m.y. should be calibrated to one precession cycle older than previously proposed. Application of the astronomical solution of Laskar [1990, doi:10.1016/0019-1035(90)90084-M], (hereinafter referred to as La90) with present-day values for the dynamical ellipticity of the Earth and tidal dissipation by the Sun and Moon results in the best fit with the geological record, indicating that this solution is the most accurate from a geological point of view. Application of Ber90, or La90 solutions with dynamical ellipticity values smaller or larger than the present-day value, results in a less obvious fit with the geological record. This implies that the change in the planetary shape of the Earth associated with ice loading and unloading near the poles during the last 5.3 million years was too small to drive the precession into resonance with the perturbation term, s6-g6+g5, of Jupiter and Saturn. Our new timescale results in a slight but significant modification of all ages of the sedimentary cycles, bioevents, reversal boundaries, chronostratigraphic boundaries, and glacial cycles. Moreover, a comparison of this timescale with the astronomical timescales of ODP site 846 [Shackleton et al., 1995, doi:10.2973/odp.proc.sr.138.106.1995; doi:10.2973/odp.proc.sr.138.117.1995] and ODP site 659 [Tiedemann et al., 1994, doi:10.1029/94PA00208] indicates that all obliquity-related glacial cycles prior to ~4.7 Ma in ODP sites 659 and 846 should be correlated with one obliquity cycle older than previously proposed.

Relevância:

100.00% 100.00%

Publicador: