955 resultados para Quadratic, sieve, CUDA, OpenMP, SOC, Tegrak1
Resumo:
The Heisenberg model for spin-1 bosons in one dimension presents many different quantum phases, including the famous topological Haldane phase. Here we study the robustness of such phases in front of a SU(2) symmetry-breaking field as well as the emergence of unique phases. Previous studies have analyzed the effect of such uniaxial anisotropy in some restricted relevant points of the phase diagram. Here we extend those studies and present the complete phase diagram of the spin-1 chain with uniaxial anisotropy. To this aim, we employ the density-matrix renormalization group together with analytical approaches. The complete phase diagram can be realized using ultracold spinor gases in the Mott insulator regime under a quadratic Zeeman effect.
Resumo:
We study the question on whether the famous Golod–Shafarevich estimate, which gives a lower bound for the Hilbert series of a (noncommutative) algebra, is attained. This question was considered by Anick in his 1983 paper ‘Generic algebras and CW-complexes’, Princeton Univ. Press, where he proved that the estimate is attained for the number of quadratic relations $d\leq n^2/4$
and $d\geq n^2/2$, and conjectured that it is the case for any number of quadratic relations. The particular point where the number of relations is equal to $n(n-1)/2$ was addressed by Vershik. He conjectured that a generic algebra with this number of relations is finite dimensional. We announce here the result that over any infinite field, the Anick conjecture holds for $d \geq 4(n2+n)/9$ and an arbitrary number of generators. We also discuss the result that confirms the Vershik conjecture over any field of characteristic 0, and a series of related
asymptotic results.
Resumo:
A quadratic semigroup algebra is an algebra over a field given by the generators x_1, . . . , x_n and a finite set of quadratic relations each of which either has the shape x_j x_k = 0 or the shape x_j x_k = x_l x_m . We prove that a quadratic semigroup algebra given by n generators and d=(n^2+n)/4 relations is always infinite dimensional. This strengthens the Golod–Shafarevich estimate for the above class of algebras. Our main result however is that for every n, there is a finite dimensional quadratic semigroup algebra with n generators and d_n relations, where d_n is the first integer greater than (n^2+n)/4 . That is, the above Golod–Shafarevich-type estimate for semigroup algebras is sharp.
Resumo:
A scheduling method for implementing a generic linear QR array processor architecture is presented. This improves on previous work. It also considerably simplifies the derivation of schedules for a folded linear system, where detailed account has to be taken of processor cell latency. The architecture and scheduling derived provide the basis of a generator for the rapid design of System-on-a-Chip (SoC) cores for QR decomposition.
Resumo:
There has been much interest recently in the analysis of optomechanical systems incorporating dielectric nano- or microspheres inside a cavity field. We analyse here the situation when one of the mirrors of the cavity itself is also allowed to move. We reveal that the interplay between the two oscillators yields a cross-coupling that results in, e.g., appreciable cooling and squeezing of the motion of the sphere, despite its nominal quadratic coupling. We also discuss a simple modification that would allow this cross-coupling to be removed at will, thereby yielding a purely quadratic coupling for the sphere.