885 resultados para QUANTUM THEORY OF ATOMS IN MOLECULES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed at JPL to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections. The ions are produced by the JPL HCI Facility and passed through a neutral-gas target cell. The product charge states are analyzed by a retarding potential difference technique. Results are made absolute by measuring target pressure, and incident and product ion currents. X-rays emitted from the product ions are detected with a Ge solid-state detector having a resolution of approximately 100 eV. X-ray astronomy has taken major steps forward with the recent launch of the high-resolution satellites Chandra and Newton. The cross sections reported herein are essential for the development of the solar wind comet interaction models inspired by these observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Progress in the theoretical understanding of non-sequential double-ionization of atoms is reviewed from its beginnings with Kuchiev's work in the late 1980s and Corkum's work in the early 1990s to the present day. The crucial role of laboratory experiment as a persistent stimulus to theoretical endeavour is underlined but the predictive roles of simple, yet fundamental, theory and also of a full quantum mechanical description are not forgotten. A theoretical forward look is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theory of strongly interacting Fermi systems of a few particles is developed. At high excit at ion energies (a few times the single-parti cle level spacing) these systems are characterized by an extreme degree of complexity due to strong mixing of the shell-model-based many-part icle basis st at es by the residual two- body interaction. This regime can be described as many-body quantum chaos. Practically, it occurs when the excitation energy of the system is greater than a few single-particle level spacings near the Fermi energy. Physical examples of such systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and multicharged ions, molecules, clusters and quantum dots in solids. The main quantity of the theory is the strength function which describes spreading of the eigenstates over many-part icle basis states (determinants) constructed using the shell-model orbital basis. A nonlinear equation for the strength function is derived, which enables one to describe the eigenstates without diagonalization of the Hamiltonian matrix. We show how to use this approach to calculate mean orbital occupation numbers and matrix elements between chaotic eigenstates and introduce typically statistical variable s such as t emperature in an isolated microscopic Fermi system of a few particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Charged and neutral oxygen vacancies in the bulk and on perfect and defective surfaces of MgO are characterized as quantum-mechanical subsystems chemically bonded to the host lattice and containing most of the charge left by the removed oxygens. Attractors of the electron density appear inside the vacancy, a necessary condition for the existence of a subsystem according to the atoms in molecules theory. The analysis of the electron localization function also shows attractors at the vacancy sites, which are associated to a localization basin shared with the valence domain of the nearest oxygens. This polyatomic superanion exhibits chemical trends guided by the formal charge and the coordination of the vacancy. The topological approach is shown to be essential to understand and predict the nature and chemical reactivity of these objects. There is not a vacancy but a coreless pseudoanion that behaves as an activated host oxygen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum molecular similarity (QMS) techniques are used to assess the response of the electron density of various small molecules to application of a static, uniform electric field. Likewise, QMS is used to analyze the changes in electron density generated by the process of floating a basis set. The results obtained show an interrelation between the floating process, the optimum geometry, and the presence of an external field. Cases involving the Le Chatelier principle are discussed, and an insight on the changes of bond critical point properties, self-similarity values and density differences is performed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Starting from a phenomenological Hamiltonian originally written in terms of angular momentum operators we derive a new quantum angle-based Hamiltonian that allows for a discussion on the quantum spin tunneling. The study of the applicability of the present approach, carried out in calculations with a soluble quasi-spin model, shows that we are allowed to use our method in the description of physical systems such as the Mn12-acetate molecule, as well as the octanuclear iron cluster, Fe8, in a reliable way. With the present description the interpretation of the spin tunneling is seen to be direct, the spectra and energy barriers of those systems are obtained, and it is shown that they agree with the experimental ones. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the electric polarizability of a bound system in relativistic quantum theory, there are two definitions that have appeared in the literature. They differ depending on whether or not the vacuum background is included in the system. A recent confusion in this connection is clarified. © 1999 American Associations of Physics Teachers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quantitative effect in the maximum number of particles and other static observables was determined. A deviation in the harmonic trap potential that is effective only outside the central part of the potential, with the addition of a term that is proportional to a cubic or quartic power of the distance was considered. Results showed that this study could be easily transferred to other trap geometries to estimate anharmonic effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantitative analysis of the critical number of attractive Bose-Einstein condensed atoms in asymmetric traps was studied. The Gross-Pitaevskii (GP) formalism for an atomic system with arbitrary nonspherically symmetric harmonic trap was also discussed. Characteristic limits were obtained for reductions from three to two and one dimensions from three to two and one dimensions, in perfect cylindrical symmetries as well as in deformed ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review recent progress in the mathematical theory of quantum disordered systems: the Anderson transition, including some joint work with Marchetti, the (quantum and classical) Edwards-Anderson (EA) spin-glass model and return to equilibrium for a class of spin-glass models, which includes the EA model initially in a very large transverse magnetic field. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770066]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid configurations generated by Metropolis Monte Carlo simulations are used in time-dependent density functional theory calculations of the spectral line shifts and line profiles of the lowest lying excitation of the alkaline earth atoms, Be, Mg, Ca, Sr and Ba embedded in liquid helium. The results are in very good agreement with the available experimental data. Special attention is given to the calculated spectroscopic shift and the associated line broadening. The analysis specifies the inhomogeneous broadening of the three separate contributions due to the splitting of the s -> p transition of the alkaline earth atom in the liquid environment. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coupled-cluster theory in its single-reference formulation represents one of the most successful approaches in quantum chemistry for the description of atoms and molecules. To extend the applicability of single-reference coupled-cluster theory to systems with degenerate or near-degenerate electronic configurations, multireference coupled-cluster methods have been suggested. One of the most promising formulations of multireference coupled cluster theory is the state-specific variant suggested by Mukherjee and co-workers (Mk-MRCC). Unlike other multireference coupled-cluster approaches, Mk-MRCC is a size-extensive theory and results obtained so far indicate that it has the potential to develop to a standard tool for high-accuracy quantum-chemical treatments. This work deals with developments to overcome the limitations in the applicability of the Mk-MRCC method. Therefore, an efficient Mk-MRCC algorithm has been implemented in the CFOUR program package to perform energy calculations within the singles and doubles (Mk-MRCCSD) and singles, doubles, and triples (Mk-MRCCSDT) approximations. This implementation exploits the special structure of the Mk-MRCC working equations that allows to adapt existing efficient single-reference coupled-cluster codes. The algorithm has the correct computational scaling of d*N^6 for Mk-MRCCSD and d*N^8 for Mk-MRCCSDT, where N denotes the system size and d the number of reference determinants. For the determination of molecular properties as the equilibrium geometry, the theory of analytic first derivatives of the energy for the Mk-MRCC method has been developed using a Lagrange formalism. The Mk-MRCC gradients within the CCSD and CCSDT approximation have been implemented and their applicability has been demonstrated for various compounds such as 2,6-pyridyne, the 2,6-pyridyne cation, m-benzyne, ozone and cyclobutadiene. The development of analytic gradients for Mk-MRCC offers the possibility of routinely locating minima and transition states on the potential energy surface. It can be considered as a key step towards routine investigation of multireference systems and calculation of their properties. As the full inclusion of triple excitations in Mk-MRCC energy calculations is computational demanding, a parallel implementation is presented in order to circumvent limitations due to the required execution time. The proposed scheme is based on the adaption of a highly efficient serial Mk-MRCCSDT code by parallelizing the time-determining steps. A first application to 2,6-pyridyne is presented to demonstrate the efficiency of the current implementation.