970 resultados para Pulmonary Vascular Function
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Increased reactive oxygen species (ROS) promote matrix metalloproteinase (MMP) activities and may underlie cardiomyocyte injury and the degradation of cardiac troponin I (cTI) during acute pulmonary thromboembolism (APT). We examined whether pretreatment or therapy with tempol (a ROS scavenger) prevents MMP activation and cardiomyocyte injury of APT. Anesthetized sheep received tempol infusion (1.0 mg kg(-1) min(-1), i.v.) or saline starting 30 min before or 30 min after APT (autologous blood clots). Control animals received saline. Hemodynamic measurements were performed. MMPs were studied in the right ventricle (RV) by gelatin zymography, fluorimetric activity assay, and in situ zymography. The ROS levels were determined in the RV and cTI were measured in serum samples. APT increased the pulmonary arterial pressure and pulmonary vascular resistance by 146 and 164 %, respectively. Pretreatment or therapy with tempol attenuated these increases. While APT increased RV + dP/dt (max), tempol infusions had no effects. APT increased RV MMP-9 (but not MMP-2) levels. In line with these findings, APT increased RV MMP activities, and this finding was confirmed by in situ zymography. APT increased the RV ROS levels and tempol infusion, before or after APT, and blunted APT-induced increases in MMP-9 levels, MMP activities, in situ MMP activities, and ROS levels in the RV. cTI concentrations increased after APT, and tempol attenuated these increases. RV oxidative stress after APT increases the RV MMP activities, leading to the degradation of sarcomeric proteins, including cTI. Antioxidant treatment may prevent MMP activation and protect against cardiomyocyte injury after APT.
Resumo:
The acute obstruction of pulmonary vessels by venous thrombi is a critical condition named acute pulmonary embolism (APE). During massive APE, severe pulmonary hypertension may lead to death secondary to right heart failure and circulatory shock. APE-induced pulmonary hypertension is aggravated by active pulmonary vasoconstriction. While blocking the effects of some vasoconstrictors exerts beneficial effects, no previous study has examined whether angiotensin II receptor blockers protect against the hemodynamic changes associated with APE. We examined the effects exerted by losartan on APE-induced hemodynamic changes. Hemodynamic evaluations were performed in non-embolized lambs treated with saline (n = 4) and in lambs that were embolized with silicon microspheres and treated with losartan (30 mg/kg followed by 1 mg/kg/h, n = 5) or saline (n = 7) infusions. The plasma and lung angiotensin-converting enzyme (ACE) activity were assessed using a fluorometric method. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 21 +/- 2 mmHg and 375 +/- 20 dyn s cm(-5) m(-2), respectively (P < 0.05). Losartan decreased MPAP significantly (by approximately 15%), without significant changes in PVRI and tended to decrease cardiac index (P > 0.05). Lung and plasma ACE activity were similar in both embolized and non-embolized animals. Our findings show evidence of lack of activation of the renin-angiotensin system during APE. The lack of significant effects of losartan on the pulmonary vascular resistance suggests that losartan does not protect against the hemodynamic changes found during APE.
Resumo:
Aims: Cytokines interfere with signaling pathways and mediators of vascular contraction. Endothelin-1 (ET-1) plays a major role on vascular dysfunction in conditions characterized by increased circulating levels of adipokines. In the present study we tested the hypothesis that the adipokine chemerin increases vascular contractile responses via activation of ET-1/ET-1 receptors-mediated pathways. Main methods: Male, 10-12 week-old Wistar rats were used. Endothelium-intact and endothelium-denuded aortic rings were incubated with chemerin (0.5 ng/mL or 5 ng/mL, for 1 or 24 h), and isometric contraction was recorded. Protein expression was determined by Western blotting. Key findings: Constrictor responses to phenylephrine (PE) and ET-1 were increased in vessels treated for 1 h with chemerin. Chemerin incubation for 24 h decreased PE contractile response whereas it increased the sensitivity to ET-1. Endothelium removal significantly potentiated chemerin effects on vascular contractile responses to PE and ET-1. Incubation with either an ERK1/2 inhibitor (PD98059) or ETA antagonist (BQ123) abolished chemerin effects on PE- and ET-1-induced vasoconstriction. Phosphorylation of MEK1/2 and ERK1/2 was significantly increased in vessels treated with chemerin for 1 and 24 h. Phosphorylation of these proteins was further increased in vessels incubated with ET-1 plus chemerin. ET-1 increased MEK1/2, ERK1/2 and MKP1 protein expression to values observed in vessels treated with chemerin. Significance: Chemerin increases contractile responses to PE and ET-1 via ERK1/2 activation. Our study contributes to a better understanding of the mechanisms by which the adipose tissue affects vascular function and, consequently, the vascular alterations present in obesity and related diseases. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND: Only about 15% of donor lungs are considered suitable for transplantation (LTx). Ex vivo lung perfusion (EVLP) has been developed as a method to reassess and repair damaged lungs. We report our experience with EVLP in non-acceptable donor lungs and evaluate its ability to recondition these lungs. METHODS: We studied lungs from 16 brain-dead donors rejected for LTx. After harvesting, the lungs were stored at 4 degrees C for 10 hours and subjected to normothermic EVLP with Steen Solution (Vitro life, Goteborg, Sweden) for 60 minutes. For functional evaluation, the following variables were assessed: partial pressure of arterial oxygen (Pao(2)), pulmonary vascular resistance (PVR), and lung compliance (LC). For histologic assessment, lung biopsy was done before harvest and after EVLP. Tissue samples were examined under light microscopy. To detect and quantify apoptosis, terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling assay was used. RESULTS: Thirteen lima donors were refused for having impaired lung function. The mean Pao(2) obtained in the organ donor at the referring hospital was 193.7 mm Hg and rose to 489 mm Hg after EVLP. During EVLP, the mean PVR was 652.5 dynes/sec/cm(5) and the mean LC was 48 ml/cm H2O. There was no significant difference between the mean Lung Injury Score before harvest and after EVLP. There was a trend toward a reduction in the median number of apoptotic cells after EVLP. CONCLUSIONS: EVLP improved lung function (oxygenation capacity) of organs considered unsuitable for transplantation. Lung tissue structure did not deteriorate even after 1 hour of normothermic perfusion. J Heart Lung Transplant 2012;31:305-9 (C) 2012 International Society for Heart and Lung Transplantation. All rights reserved.
Resumo:
Background: Schistosomiasis-associated pulmonary arterial hypertension (Sch-PAH) may be one of the most prevalent forms of pulmonary arterial hypertension (PAH) worldwide. However, the clinical and hemodynamical response to specific PAH therapy in Sch-PAH is not known. Methods: We retrospectively analyzed the charts of all patients with Sch-PAH who initiated specific PAH treatment between June 2003 and June 2010 in a single PAH reference center in Sao Paulo, Brazil. Clinical and hemodynamical data were retrospectively collected and evaluated in two periods: baseline and posttreatment. Results: The study population consisted of 12 patients with Sch-PAH. They were treated with phosphodiseterase-5 inhibitors (seven patients), endothelin receptor antagonists (four patients), or combination therapy (one patient). Mean treatment period was 34.9 +/- 15.5 months. Patients with Sch-PAH presented significant improvements in terms of functional class, 6-min walk test distance (439 +/- 85 to 492 +/- 79 m, P = .032), cardiac index (2.66 +/- 0.59 to 3.08 +/- 0.68 L/min/m(2), P = .028), and indexed pulmonary vascular resistance (20.7 +/- 11.6 to 15.9 +/- 9 W/m(2), P = .038) with the introduction of specific PAH treatment. Conclusions: We conclude that specific PAH therapy may be of benefit to patients with Sch-PAH, considering clinical, functional, and hemodynamic parameters. CHEST 2012; 141(4):923-928
Resumo:
The objective of this study was to observe possible interactions between the renin-angiotensin and nitrergic systems in chronic hypoxia-induced pulmonary hypertension in newborn piglets. Thirteen chronically instrumented newborn piglets (6.3 +/- 0.9 days; 2369 +/- 491 g) were randomly assigned to receive saline (placebo, P) or the AT(1) receptor (AT(1)-R) blocker L-158,809 (L) during 6 days of hypoxia (FiO(2) = 0.12). During hypoxia, pulmonary arterial pressure (Ppa; P < 0.0001), pulmonary vascular resistance (PVR; P < 0.02) and the pulmonary to systemic vascular resistance ratio (PVR/SVR; P < 0.05) were significantly attenuated in the L (N = 7) group compared to the P group (N = 6). Western blot analysis of lung proteins showed a significant decrease of endothelial NOS (eNOS) in both P and L animals, and of AT(1)-R in P animals during hypoxia compared to normoxic animals (C group, N = 5; P < 0.01 for all groups). AT(1)-R tended to decrease in L animals. Inducible NOS (iNOS) did not differ among P, L, and C animals and iNOS immunohistochemical staining in macrophages was significantly more intense in L than in P animals (P < 0.01). The vascular endothelium showed moderate or strong eNOS and AT(1)-R staining. Macrophages and pneumocytes showed moderate or strong iNOS and AT(1)-R staining, but C animals showed weak iNOS and AT(1)-R staining. Macrophages of L and P animals showed moderate and weak AT(2)-R staining, respectively, but the endothelium of all groups only showed weak staining. In conclusion, pulmonary hypertension induced by chronic hypoxia in newborn piglets is partially attenuated by AT(1)-R blockade. We suggest that AT(1)-R blockade might act through AT(2)-R and/or Mas receptors and the nitrergic system in the lungs of hypoxemic newborn piglets.
Resumo:
Objective: To investigate, in male Wistar rats, the effects of long-term moderate red wine (RW) consumption (equivalent to similar to 0.15 mg% resveratrol RS), or RS in low (L, 0.15 mg%) or high (H, 400 mg%) doses in chow. Background: Both RW and RS exhibit cardioprotection. RS extends lifespan in obese rats. It is unclear whether RW consumption or low-dose RS delay vascular aging and prolong life span in the absence of overt risk factors. Methods: Endpoints were aerobic performance, exercise capacity, aging biomarkers (p53,p16,p21, telomere length and telomerase activity in aortic homogenates), vascular reactivity. Data were compared with controls (C) given regular chow. Results: Expressions of p53 decreased similar to 50% similar to with RW and LRS (p < 0.05 vs. C), p16 by similar to 29% with RW (p < 0.05 vs. C) and p21 was unaltered. RW and LRS increased telomere length >6.5-fold vs. C, and telomerase activity increased with LRS and HRS. All treatments increased aerobic capacity (C 32.5 +/- 1.2, RW 38.7 + 1.7, LRS 38.5 + 1.6, HRS 38.3 + 1.8 mlO2 min(-1) kg(-1)), and RW or LRS also improved time of exercise tolerance vs. C (p < 0.05). Endothelium-dependent relaxation improved with all treatments vs. C. Life span, however, was unaltered with each treatment vs. C = 673 +/- 30 days, p = NS. Conclusions: RW and LRS can preserve vascular function indexes in normal rats, although not extending life span. These effects were translated into better aerobic performance and exercise capacity. (c) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3) that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC) relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS) plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R), a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper). These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC). Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII), which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L) for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium.
Resumo:
Introduction: In the last years cardiac surgery for congenital heart disease (CHD) reduced dramatically mortality modifying prognosis, but, at the same time, increased morbidity in this patient population. Respiratory and cardiovascular systems are strictly anatomically and functionally connected, so that alterations of pulmonary hemodynamic conditions modify respiratory function. While very short-term alterations of respiratory mechanics after surgery were investigated by many authors, not as much works focused on long-term changes. In these subjects rest respiratory function may be limited by several factor: CHD itself (fetal pulmonary perfusion influences vascular and alveolar development), extracorporeal circulation (CEC), thoracotomy and/or sternotomy, rib and sternal contusions, pleural adhesions and pleural fibrosis, secondary to surgical injury. Moreover inflammatory cascade, triggered by CEC, can cause endothelial damage and compromise gas exchange. Aims: The project was conceived to 1) determine severity of respiratory functional impairement in different CHD undergone to surgical correction/palliation; 2) identify the most and the least CHD involved by pulmonary impairement; 3) find a correlation between a specific hemodynamic condition and functional anomaly, and 4) between rest respiratory function and cardiopulmonary exercise test. Materials and methods: We studied 113 subjects with CHD undergone to surgery, and distinguished by group in accord to pulmonary blood flow (group 0: 28 pts with normal pulmonary flow; group 1: 22 pts with increased flow; group 2: 43 pts with decreased flow; group 3: 20 pts with total cavo-pulmonary anastomosis-TCPC) followed by the Pediatric Cardiology and Cardiac Surgery Unit, and we compare them to 37 age- and sex-matched healthy subjects. In Pediatric Pulmonology Unit all pts performed respiratory function tests (static and dynamic volumes, flow/volume curve, airway resistances-raw- and conductance-gaw-, lung diffusion of CO-DLCO- and DLCO/alveolar volume), and CHD pts the same day had cardiopulmonary test. They all were examined and had allergological tests, and respiratory medical history. Results: restrictive pattern (measured on total lung capacity-TLC- and vital capacity-VC) was in all CHD groups, and up to 45% in group 2 and 3. Comparing all groups, we found a significant difference in TLC between healthy and group 2 (p=0.001) and 3 (p=0.004), and in VC between group 2 and healthy (p=0.001) and group 1(p=0.034). Inspiratory capacity (IC) was decreased in group 2 related to healthy (p<0.001) and group 1 (p=0.037). We showed a direct correlation between TLC and VC with age at surgery (p=0.01) and inverse with number of surgical interventions (p=0.03). Reduced FEV1/FVC ratio, Gaw and increased Raw were mostly present in group 3. DLCO was impaired in all groups, but up to 80% in group 3 and 50% in group 2; when corrected for alveolar volume (DLCO/VA) reduction persisted in group 3 (20%), 2 (6.2%) and 0 (7.1%). Exercise test was impaired in all groups: VO2max and VE markedly reduced in all but especially in group 3, and VE/VCO2 slope, marker of ventilatory response to exercise, is increased (<36) in 62.5% of group 3, where other pts had anyway value>32. Comparing group 3 and 2, the most involved categories, we found difference in VO2max and VE/VCO2 slope (respectively p=0.02 and p<0.0001). We evidenced correlation between rest and exercise tests, especially in group 0 (between VO2max and FVC, FEV1, VC, IC; inverse relation between VE/VCO2slope and FVC, FEV1 and VC), but also in group 1 (VO2max and IC), group 2 (VO2max and FVC and FEV1); never in group 3. Discussion: According with literature, we found a frequent impairment of rest pulmonary function in all groups, but especially in group 2 and 3. Restrictive pattern was the most frequent alteration probably due to compromised pulmonary (vascular and alveolar) development secondary to hypoperfusion in fetal and pre-surgery (and pre-TCPC)life. Parenchymal fibrosis, pleural adhesions and thoracic deformities can add further limitation, as showed by the correlation between group 3 and number of surgical intervention. Exercise tests were limited, particularly in group 3 (complex anatomy and lost of chronotropic response), and we found correlations between rest and exercise tests in all but group 3. We speculate that in this patients hemodynamic exceeds respiratory contribution, though markedly decreased.
Pulmonary hypertension in high-altitude dwellers: novel mechanisms, unsuspected predisposing factors
Resumo:
Studies of high-altitude populations, and in particular of maladapted subgroups, may provide important insight into underlying mechanisms involved in the pathogenesis of hypoxemia-related disease states in general. Over the past decade, studies involving short-term hypoxic exposure have greatly advanced our knowledge regarding underlying mechanisms and predisposing events of hypoxic pulmonary hypertension. Studies in high altitude pulmonary edema (HAPE)-prone subjects, a condition characterized by exaggerated hypoxic pulmonary hypertension, have provided evidence for the central role of pulmonary vascular endothelial and respiratory epithelial nitric oxide (NO) for pulmonary artery pressure homeostasis. More recently, it has been shown that pathological events during the perinatal period (possibly by impairing pulmonary NO synthesis), predispose to exaggerated hypoxic pulmonary hypertension later in life. In an attempt to translate some of this new knowledge to the understanding of underlying mechanisms and predisposing events of chronic hypoxic pulmonary hypertension, we have recently initiated a series of studies among high-risk subpopulations (experiments of nature) of high-altitude dwellers. These studies have allowed to identify novel risk factors and underlying mechanisms that may predispose to sustained hypoxic pulmonary hypertension. The aim of this article is to briefly review this new data, and demonstrate that insufficient NO synthesis/bioavailability, possibly related in part to augmented oxidative stress, may represent an important underlying mechanism predisposing to pulmonary hypertension in high-altitude dwellers.
Resumo:
BACKGROUND: Elevated pulmonary vascular resistance (PVR) is relevant to prognosis of congestive heart failure and heart transplantation. Proof of reversibility by pharmacologic testing in potential transplantation candidates is important because it indicates a reduced probability of right ventricular failure or death in the early post-transplant period. This study aimed to clarify the possible extent of acute reversibility of elevated PVR in a large, consecutive cohort of heart transplant candidates. METHODS: This study included 208 consecutive patients (age 52 +/- 10 years, 89% men and 11% women, ejection fraction 21 +/- 9%, Vo2max 12.6 +/- 4.2 ml/kg/min) being evaluated for heart transplantation in 7 transplant centers in Germany and Switzerland. Testing was performed with increasing intravenous doses of prostaglandin E1 (PGE1; average maximum dose 173 +/- 115 ng/kg/min for at least 10 minutes) in 92 patients exhibiting a baseline PVR of > 2.5 Wood units (WU) and/or a transpulmonary gradient (TPG) of > 12 mm Hg. RESULTS: PGE1 testing lowered PVR from 4.1 +/- 2.0 to 2.1 +/- 1.1 WU (p < 0.01), increased cardiac output from 3.8 +/- 1.0 to 5.0 +/- 1.5 liters/min (p < 0.01), and decreased TPG from 14 +/- 4 to 10 +/- 3 mm Hg (p < 0.01), mean pulmonary artery pressure (PAM) from 39 +/- 9 to 29 +/- 9 mm Hg (p < 0.01) and mean pulmonary capillary wedge pressure (PCWP) from 24 +/- 7 to 19 +/- 9 mm Hg (p < 0.01). Mean aortic pressure (MAP) decreased to 85% and systemic vascular resistance (SVR) to 65% of baseline values (p < 0.01). Symptomatic systemic hypotension was not observed. For the whole population the percentage of patients with PVR > 2.5 WU was reduced from 44.2% to 10.5% with PGE1. PVR decreased in each patient; only 2 patients (1%) remained ineligible for listing because of a final PVR of > 4.0 WU. TPG, ejection fraction and male gender were independent predictors of reversibility of PVR. CONCLUSIONS: Elevated PVR in heart transplant candidates is highly reversible and can be normalized during acute pharmacologic testing with PGE1.
Resumo:
BACKGROUND: Paclitaxel-eluting stents (PES) have been shown to reduce the rate of restenosis and the need for repeated revascularization procedures compared with bare metal stents. However, long-term effects of paclitaxel on vascular function are unknown. The purpose of the present study was to assess coronary vasomotor response to exercise after paclitaxel-eluting stent implantation. METHODS: Coronary vasomotion was evaluated by biplane quantitative coronary angiography at rest and during supine bicycle exercise in 27 patients with coronary artery disease. Twelve patients were treated with a bare metal stent (controls), and fifteen patients with a paclitaxel-eluting stent. All patients were restudied 6+/-2 (range 2-12) months after stent implantation. Minimal luminal diameter, stent diameter, proximal, distal and a reference vessel diameter were determined. RESULTS: Reference vessels showed exercise-induced vasodilation in both groups (+20+/-5% controls; +26+/-3% PES group). Vasomotion within the stented vessel segments was abolished. In the controls, the adjacent segments proximal and distal to the stent showed exercise-induced vasodilation (+17+/-3% and +24+/-4%). In contrast, there was exercise-induced vasoconstriction of the proximal and distal vessel segments adjacent to the paclitaxel-eluting stent (-13+/-6% and -18+/-4%; p<0.005). After sublingual nitroglycerin, the proximal and distal vessel segments dilated in both groups. Exercise-induced vasoconstriction adjacent to paclitaxel-eluting stent correlated inversely with the time interval after stent implantation. CONCLUSIONS: Paclitaxel-eluting stent implantation is associated with exercise-induced vasoconstriction in the persistent region suggesting endothelial dysfunction as the underlying mechanism. Improvement of vascular function occurs over time, indicating delayed vascular healing.
Resumo:
BACKGROUND: Skeletal muscular counterpulsation (MCP) has been used as a new noninvasive technique for treatment of low cardiac output. The MCP method is based on ECG-triggered skeletal muscle stimulation. The purpose of the present study was to evaluate acute hemodynamic changes induced by MCP in the experimental animal. METHODS: Eight anaesthetized pigs (43+/-4 kg) were studied at rest and after IV â-blockade (10 mg propranolol) before and after MCP. Muscular counterpulsation was performed on both thighs using trains (75 ms duration) of multiple biphasic electrical impulses with a width of 1 ms and a frequency of 200 Hz at low (10 V) and high (30 V) amplitude. ECG-triggering was used to synchronize stimulation to a given time point. LV pressure-volume relations were determined using the conductance catheter. After baseline measurements, MCP was carried out for 10 minutes at low and high stimulation amplitude. The optimal time point for MCP was determined from LV pressure-volume loops using different stimulation time points during systole and diastole. Best results were observed during end-systole and, therefore, this time point was used for stimulation. RESULTS: Under control conditions, MCP was associated with a significant decrease in pulmonary vascular resistance (-18%), a decrease in systemic vascular resistance (-11%) and stroke work index (-4%), whereas cardiac index (+2%) and ejection fraction (+6%) increased slightly. Pressure-volume loops showed a leftward shift with a decrease in end-systolic volume. After â-blockade, cardiac function decreased (HR, MAP, EF, dP/dt max), but it improved with skeletal muscle stimulation (HR +10% and CI +17%, EF +5%). There was a significant decrease in pulmonary (-19%) and systemic vascular resistance (-29%). CONCLUSIONS: In the animal model, ECG-triggered skeletal muscular counterpulsation is associated with a significant improvement in cardiac function at baseline and after IV â-blockade. Thus, MCP represents a new, non-invasive technique which improves cardiac function by diastolic compression of the peripheral arteries and veins, with a decrease in systemic vascular resistance and increase in cardiac output.