930 resultados para Puberty timing
Resumo:
During puberty fat-free mass (FFM) and fat mass (FM) change quickly and these changes are influenced by sex and obesity. Since it is not completely known how these changes affect resting metabolic rate (RMR), the aim of the present study was to investigate the effect of body composition, age, sex and pubertal development of postabsorptive RMR in 9.5- to 16.5- year-old obese and non-obese children. Postabsorptive RMR was measured in a sample of 371 pre- and postpubertal children comprising 193 males (116 non-obese and 77 obese) and 178 females (119 non-obese and 59 obese). RMR was assessed by indirect calorimetry using a ventilated hood system for 45 min after an overnight fast. Body composition (FFM and FM) was estimated from skinfold measurements. The mean (+/- SD) RMR was significantly (P < 0.001) lower in non-obese (males: 5600 +/- 972 kJ/24 h; females: 5112 +/- 632 kJ/24 h) than in obese (males: 7223 +/- 1220 kJ/24 h; females: 6665 +/- 1106 kJ/24 h) children. This difference became non-significant when RMR was adjusted for body composition (FFM+FM). However, the difference between the genders still remained significant (control male: 6118 +/- 507, control female: 5652 +/- 507, P < 0.001; obese male: 6256 +/- 507, obese female: 5818 +/- 507 kJ/24 h, P < 0.001). The main determinant of RMR was FFM. In the whole cohort. FFM explained 79.8% of the variation in RMR, followed by age, gender and FM adding further 3.8%, 1.1% and 0.8% to the predictability of RMR, respectively. No significant contribution for study group (obese, non-obese), pubertal stage, or fat distribution was found in the regression for RMR. The adjusted value of RMR (for FFM and FM) slightly, but significantly (P < 0.01) decreased between the age of 10-16 years, demonstrating the important effect of age on RMR. CONCLUSIONS: The resting metabolic rate of obese and control children is not different when adjusted for body composition. The main determinant of RMR is the fat-free mass, however, age, gender and fat mass are also significant factors. Pubertal development and fat distribution do not influence RMR independently from the changes in body composition.
Resumo:
The objective of this work was to determine the effect of incorporation timing of the velvet bean (Stizolobium cinereum) (GM) on both organic broccoli yield and N status. Mineral N content in the soil, biologically fixed N recovery by broccoli, GM biomass decomposition and N release kinetics were also determined. Plots were fertilized with 12 Mg ha-1 of organic compost and received GM either at 0, 15, 30 or 45 days after transplant. Other treatments were compost (12 or 25 Mg ha-1), GM, mineral fertilizers and control (no fertilizer). The data were collected in four completely randomized blocks. GM decomposition increased mineral N content in soil as rapidly as mineral fertilizer or the supply of 25 Mg ha-1 of compost. The N half-life in GM (24 days) is smaller than the mass half-life (35 days) and the biological fixation contributed with 23.6% of N present in the aboveground biomass of broccoli. The result suggests a higher synchrony between the crop relative growth rate and N release from the GM when incorporated at crop early growth stage. The incorporation of GM until 15 days after transplanting replaces 50% of the highest compost dose, without yield loss.
Resumo:
Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS) duration and in non-REM sleep (NREMS) consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG) power in the delta frequency range (1-4 Hz) under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep.
Resumo:
Here, we identify a role for the matrilin-2 (Matn2) extracellular matrix protein in controlling the early stages of myogenic differentiation. We observed Matn2 deposition around proliferating, differentiating and fusing myoblasts in culture and during muscle regeneration in vivo. Silencing of Matn2 delayed the expression of the Cdk inhibitor p21 and of the myogenic genes Nfix, MyoD and Myog, explaining the retarded cell cycle exit and myoblast differentiation. Rescue of Matn2 expression restored differentiation and the expression of p21 and of the myogenic genes. TGF-β1 inhibited myogenic differentiation at least in part by repressing Matn2 expression, which inhibited the onset of a positive-feedback loop whereby Matn2 and Nfix activate the expression of one another and activate myoblast differentiation. In vivo, myoblast cell cycle arrest and muscle regeneration was delayed in Matn2(-/-) relative to wild-type mice. The expression levels of Trf3 and myogenic genes were robustly reduced in Matn2(-/-) fetal limbs and in differentiating primary myoblast cultures, establishing Matn2 as a key modulator of the regulatory cascade that initiates terminal myogenic differentiation. Our data thus identify Matn2 as a crucial component of a genetic switch that modulates the onset of tissue repair.
Resumo:
In a previous work we have shown that sinusoidal whole-body rotations producing continuous vestibular stimulation, affected the timing of motor responses as assessed with a paced finger tapping (PFT) task (Binetti et al. (2010). Neuropsychologia, 48(6), 1842-1852). Here, in two new psychophysical experiments, one purely perceptual and one with both sensory and motor components, we explored the relationship between body motion/vestibular stimulation and perceived timing of acoustic events. In experiment 1, participants were required to discriminate sequences of acoustic tones endowed with different degrees of acceleration or deceleration. In this experiment we found that a tone sequence presented during acceleratory whole-body rotations required a progressive increase in rate in order to be considered temporally regular, consistent with the idea of an increase in "clock" frequency and of an overestimation of time. In experiment 2 participants produced self-paced taps, which entailed an acoustic feedback. We found that tapping frequency in this task was affected by periodic motion by means of anticipatory and congruent (in-phase) fluctuations irrespective of the self-generated sensory feedback. On the other hand, synchronizing taps to an external rhythm determined a completely opposite modulation (delayed/counter-phase). Overall this study shows that body displacements "remap" our metric of time, affecting not only motor output but also sensory input.
Resumo:
Abstract
Resumo:
Les invasions biològiques són produïdes per espècies transportades per l'home fora de la regió d'origen a altres regions on s'estableixen i expandeixen. Són actualment de les majors causes de perduda de biodiversitat, amb el canvi d'usos del sòl, tret rellevant en zones insulars. Comprendre mecanismes de competència amb les espècies autòctones és clau per gestionar el problema. L’experiment evidencia diferències de creixement de 7 plantes natives australianes (3 espècies d’eucaliptus, 3 espècies d’acàcia, 1 pasturatge natiu), competint intraespecífica (entre mateixa espècie) i interespecíficament (acàcies o eucaliptus convivint amb pasturatge natiu) plantejant tres tractaments (sense males herbes, males herbes i males herbes a posteriori) per definir la naturalesa de la interacció dels diferents tipus funcionals d'espècies. S’analitzen tendències temporals de creixement de plàntules, així com la supervivència. S’ha detectat una moderada correlació entre taxes de creixement d’espècies i mida de la llavor, (p ≈ 0.6), així com una correlació entre la supervivència i la humitat del sòl (p ≈ 0.5); efectes estacionals. A curt termini i en escenari de primavera la convivència amb males herbes reporta creixement nul. Tractaments sense males herbes, presenten major supervivència en escenaris en competència interespecífica. A llarg termini les espècies amb major supervivència són les que conviuen amb pasturatge natiu i sense males herbes, indicant un efecte beneficiós en espècies millor adaptades a la sequera (E. loxophleba).
Resumo:
Aims: To compare the frequency of life events in the year preceding illness onset in a series of Conversion Disorder (CD) patients, with those of a matched control group and to characterize the nature of those events in terms of "escape" potential. Traditional models of CD hypothesise that relevant stressful experiences are "converted" into physical symptoms to relieve psychological pressure, and that the resultant disability allows "escape" from the stressor, providing some advantage to the individual. Methods: The Life Events and Difficulties Schedule (LEDS) is a validated semi-structured interview designed to minimise recall and interviewer bias through rigorous assessment and independent rating of events. An additional "escape" rating was developed. Results: In the year preceding onset in 25 CD patients (mean age 38.9 years ± 8) and a similar matched period in 13 controls (mean age 36.2 years ± 10), no significant difference was found in the proportion of subjects having ≥ 1 severe event (CD 64%, controls 38%; p=0.2). In the last month preceding onset, a higher number of patients experienced ≥1 severe events than controls (52% vs 15%, odds ratio 5.95 (CI: 1.09-32.57)). Patients were twice as much more likely to have a severe escape events than controls, in the month preceding onset (44% vs 7%, odds ratio 9.43 (CI: 1.06-84.04). Conclusion: Preliminary data from this ongoing study suggest that the time frame (preceding month) and the nature ("escape") of the events may play an important role in identifying key events related to CD onset.
Resumo:
Recent experiments have established that information can be encoded in the spike times of neurons relative to the phase of a background oscillation in the local field potential—a phenomenon referred to as “phase-of-firing coding” (PoFC). These firing phase preferences could result from combining an oscillation in the input current with a stimulus-dependent static component that would produce the variations in preferred phase, but it remains unclear whether these phases are an epiphenomenon or really affect neuronal interactions—only then could they have a functional role. Here we show that PoFC has a major impact on downstream learning and decoding with the now well established spike timing-dependent plasticity (STDP). To be precise, we demonstrate with simulations how a single neuron equipped with STDP robustly detects a pattern of input currents automatically encoded in the phases of a subset of its afferents, and repeating at random intervals. Remarkably, learning is possible even when only a small fraction of the afferents (~10%) exhibits PoFC. The ability of STDP to detect repeating patterns had been noted before in continuous activity, but it turns out that oscillations greatly facilitate learning. A benchmark with more conventional rate-based codes demonstrates the superiority of oscillations and PoFC for both STDP-based learning and the speed of decoding: the oscillation partially formats the input spike times, so that they mainly depend on the current input currents, and can be efficiently learned by STDP and then recognized in just one oscillation cycle. This suggests a major functional role for oscillatory brain activity that has been widely reported experimentally.
Resumo:
Many prairie restoration projects are hampered by a lack of knowledge on how to restore the high diversity found in prairies, while at the same time preventing the establishment of a large weedy component. Methods are needed to increase diversity and abundance of native species while minimizing exotic species invasions in both 1) newly planted restorations and 2) established restorations. We established an experiment in Story and Monona counties in 2005 to determine the effects of different native cover crop species and timing of seeding on the establishment of new prairie restorations. We found that adding a 30-species prairie mix in early spring led to diverse native communities, but adding the mix in the late summer or the following year after cover crops established led to low diversity communities dominated by exotics. The identity of cover crops affected communities less than timing of seed additions. A second seed addition added to ash after a spring fire in the seventh year (Monona County site) increased recruitment from the prairie mix slightly, but the increase was not enough to cause convergence in the treatments. Surprisingly, the second seed addition increased diversity only in communities that were already the most diverse (i.e., in plots seeded with the prairie mix in early spring before cover crops established). These results imply that 1) cover crops are not effective for establishing prairie and 2) over seeding into established plots may not be an easy and efficient way to increase native recruitment and lower weedy species abundances. Therefore, focusing on establishing high levels of recruitment and diversity and excluding weedy species during the critical time early in establishment should be a priority for new projects.
Resumo:
Decision-making in an uncertain environment is driven by two major needs: exploring the environment to gather information or exploiting acquired knowledge to maximize reward. The neural processes underlying exploratory decision-making have been mainly studied by means of functional magnetic resonance imaging, overlooking any information about the time when decisions are made. Here, we carried out an electroencephalography (EEG) experiment, in order to detect the time when the brain generators responsible for these decisions have been sufficiently activated to lead to the next decision. Our analyses, based on a classification scheme, extract time-unlocked voltage topographies during reward presentation and use them to predict the type of decisions made on the subsequent trial. Classification accuracy, measured as the area under the Receiver Operator's Characteristic curve was on average 0.65 across 7 subjects. Classification accuracy was above chance levels already after 516 ms on average, across subjects. We speculate that decisions were already made before this critical period, as confirmed by a positive correlation with reaction times across subjects. On an individual subject basis, distributed source estimations were performed on the extracted topographies to statistically evaluate the neural correlates of decision-making. For trials leading to exploration, there was significantly higher activity in dorsolateral prefrontal cortex and the right supramarginal gyrus; areas responsible for modulating behavior under risk and deduction. No area was more active during exploitation. We show for the first time the temporal evolution of differential patterns of brain activation in an exploratory decision-making task on a single-trial basis.
Resumo:
The objective of this work was to evaluate the effect of cover crops and timing of pre-emergence herbicide applications on soybean yield under no-tillage system. The experiment consisted of four cover crops (Panicum maximum, Urochloa ruziziensis, U. brizantha, and pearl millet) and fallow, in addition to four herbicide timings (30, 20, 10, and 0 days before soybean sowing), under no-tillage system (NTS), and of two control treatments under conventional tillage system (CTS). The experimental design was a completely randomized block, in a split-plot arrangement, with three replicates. Soybean under fallow, P. maximum, U. ruziziensis, U. brizantha, and pearl millet in the NTS and soybean under U. brizantha in the CTS did not differ significantly regarding yield. Soybean under fallow in the CTS significantly reduced yield when compared to the other treatments. The amount of straw on soil surface did not significantly affect soybean yield. Chemical management of P. maximum and U. brizantha near the soybean sowing date causes significant damage in soybean yield. However, herbicide timing in fallow, U. ruziziensis, and pearl millet does not affect soybean yield.
Resumo:
Abstract
Resumo:
The objective of this work was to evaluate the effect of ethephon and of abscisic acid (ABA) application timing on the color of 'Rubi' Table grape. Eight treatments were evaluated: control, without application; ethephon 500 mg L‑1 applied seven days after veraison (7 DAV); and two concentrations of ABA (200 and 400 mg L‑1) arranged with three application timings at 7 DAV, at 15 days before harvest (DBH), and at 7 DAV + 15 DBH. ABA does not modify physical‑chemical characteristics of the cluster and improves the color of grapes, especially when applied twice (7 DAV + 15 DBH) at the concentration of 400 mg L‑1.