926 resultados para Programmable array logic
Resumo:
Maintaining a high level of data security with a low impact on system performance is more challenging in wireless multimedia applications. Protocols that are used for wireless local area network (WLAN) security are known to significantly degrade performance. In this paper, we propose an enhanced security system for a WLAN. Our new design aims to decrease the processing delay and increase both the speed and throughput of the system, thereby making it more efficient for multimedia applications. Our design is based on the idea of offloading computationally intensive encryption and authentication services to the end systems’ CPUs. The security operations are performed by the hosts’ central processor (which is usually a powerful processor) before delivering the data to a wireless card (which usually has a low-performance processor). By adopting this design, we show that both the delay and the jitter are significantly reduced. At the access point, we improve the performance of network processing hardware for real-time cryptographic processing by using a specialized processor implemented with field-programmable gate array technology. Furthermore, we use enhanced techniques to implement the Counter (CTR) Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP) and the CTR protocol. Our experiments show that it requires timing in the range of 20–40 μs to perform data encryption and authentication on different end-host CPUs (e.g., Intel Core i5, i7, and AMD 6-Core) as compared with 10–50 ms when performed using the wireless card. Furthermore, when compared with the standard WiFi protected access II (WPA2), results show that our proposed security system improved the speed to up to 3.7 times.
Resumo:
Over the past decades several approaches for schedulability analysis have been proposed for both uni-processor and multi-processor real-time systems. Although different techniques are employed, very little has been put forward in using formal specifications, with the consequent possibility for mis-interpretations or ambiguities in the problem statement. Using a logic based approach to schedulability analysis in the design of hard real-time systems eases the synthesis of correct-by-construction procedures for both static and dynamic verification processes. In this paper we propose a novel approach to schedulability analysis based on a timed temporal logic with time durations. Our approach subsumes classical methods for uni-processor scheduling analysis over compositional resource models by providing the developer with counter-examples, and by ruling out schedules that cause unsafe violations on the system. We also provide an example showing the effectiveness of our proposal.
Resumo:
Optimization methods have been used in many areas of knowledge, such as Engineering, Statistics, Chemistry, among others, to solve optimization problems. In many cases it is not possible to use derivative methods, due to the characteristics of the problem to be solved and/or its constraints, for example if the involved functions are non-smooth and/or their derivatives are not know. To solve this type of problems a Java based API has been implemented, which includes only derivative-free optimization methods, and that can be used to solve both constrained and unconstrained problems. For solving constrained problems, the classic Penalty and Barrier functions were included in the API. In this paper a new approach to Penalty and Barrier functions, based on Fuzzy Logic, is proposed. Two penalty functions, that impose a progressive penalization to solutions that violate the constraints, are discussed. The implemented functions impose a low penalization when the violation of the constraints is low and a heavy penalty when the violation is high. Numerical results, obtained using twenty-eight test problems, comparing the proposed Fuzzy Logic based functions to six of the classic Penalty and Barrier functions are presented. Considering the achieved results, it can be concluded that the proposed penalty functions besides being very robust also have a very good performance.
Resumo:
O veículo guiado automaticamente (AGV) adquirido pelo Departamento de Engenharia Mecânica (DEM) tem vindo a ficar obsoleto devido ao hardware, que nos dias de hoje começa a dar sinais de falhas bem como falta de peças de substituição, e ao software, sendo o PLC (Programmable Logic Controller) usado muito limitado quanto às suas funções de controlo, ficando as principais tarefas de controlo do AGV a cargo de placas eletrónicas de controlo. Para promover o controlo autónomo do AGV, foi decidido retirar toda a parte de hardware que detinha o controlo do mesmo e passou a ser um novo PLC, com maior capacidade de processamento, a executar todo o tipo de controlo necessário ao funcionamento do mesmo. O hardware considerado apenas incluí, de forma resumida, os motores responsáveis pelo movimento e direção, placa de controlo de potência dos motores, placa de interface entre as saídas digitais do PLC e as entradas da placa de controlo de potência dos motores e os demais sensores necessários à deteção de obstáculos, fins de curso da direção, sensores dos postos de trabalho e avisadores de emergência. Todo o controlo de movimento e direção bem como a seleção das ações a executar passou a ficar a cargo do software programado no PLC assim como a interação entre o sistema de supervisão instalado num posto de controlo e o PLC através de comunicação via rádio. O uso do PLC permitiu a flexibilidade de mudar facilmente a forma como as saídas digitais são usadas, ao contrário de um circuito eletrónico que necessita de uma completa remodelação, tempo de testes e implementação para efetuar a mesma função. O uso de um microcontrolador seria igualmente viável para a aplicação em causa, no entanto o uso do PLC tem a vantagem de ser robusto, mais rápido na velocidade de processamento, existência de software de interface de programação bastante intuitivo e de livre acesso, facilidade de alterar a programação localmente ou remotamente, via rádio, acesso a vários protocolos de comunicação robustos como Modbus, Canbus, Profinet, Modnet, etc., e acesso integrado de uma consola gráfica totalmente programável. iv É ainda possível a sua expansão com adição de módulos de entradas e saídas digitais e/ou analógicas permitindo expandir largamente o uso do AGV para outros fins. A solução está a ser amplamente testada e validada no Laboratório de Automação (LabA) do Departamento de Engenharia Mecânica do ISEP (Instituto Superior de Engenharia do Porto), permitindo a otimização dos sistemas de controlo de direção bem como a interatividade entre o PLC e o programa de interface/supervisão do posto de trabalho.
Resumo:
A crescente evolução dos dispositivos contendo circuitos integrados, em especial os FPGAs (Field Programmable Logic Arrays) e atualmente os System on a chip (SoCs) baseados em FPGAs, juntamente com a evolução das ferramentas, tem deixado um espaço entre o lançamento e a produção de materiais didáticos que auxiliem os engenheiros no Co- Projecto de hardware/software a partir dessas tecnologias. Com o intuito de auxiliar na redução desse intervalo temporal, o presente trabalho apresenta o desenvolvimento de documentos (tutoriais) direcionados a duas tecnologias recentes: a ferramenta de desenvolvimento de hardware/software VIVADO; e o SoC Zynq-7000, Z-7010, ambos desenvolvidos pela Xilinx. Os documentos produzidos são baseados num projeto básico totalmente implementado em lógica programável e do mesmo projeto implementado através do processador programável embarcado, para que seja possível avaliar o fluxo de projeto da ferramenta para um projeto totalmente implementado em hardware e o fluxo de projeto para o mesmo projeto implementado numa estrutura de harware/software.
Resumo:
Dissertação para obtenção do Grau de Doutor em Matemática - Lógica e Fundamentos da Matemática
Resumo:
Machine ethics is an interdisciplinary field of inquiry that emerges from the need of imbuing autonomous agents with the capacity of moral decision-making. While some approaches provide implementations in Logic Programming (LP) systems, they have not exploited LP-based reasoning features that appear essential for moral reasoning. This PhD thesis aims at investigating further the appropriateness of LP, notably a combination of LP-based reasoning features, including techniques available in LP systems, to machine ethics. Moral facets, as studied in moral philosophy and psychology, that are amenable to computational modeling are identified, and mapped to appropriate LP concepts for representing and reasoning about them. The main contributions of the thesis are twofold. First, novel approaches are proposed for employing tabling in contextual abduction and updating – individually and combined – plus a LP approach of counterfactual reasoning; the latter being implemented on top of the aforementioned combined abduction and updating technique with tabling. They are all important to model various issues of the aforementioned moral facets. Second, a variety of LP-based reasoning features are applied to model the identified moral facets, through moral examples taken off-the-shelf from the morality literature. These applications include: (1) Modeling moral permissibility according to the Doctrines of Double Effect (DDE) and Triple Effect (DTE), demonstrating deontological and utilitarian judgments via integrity constraints (in abduction) and preferences over abductive scenarios; (2) Modeling moral reasoning under uncertainty of actions, via abduction and probabilistic LP; (3) Modeling moral updating (that allows other – possibly overriding – moral rules to be adopted by an agent, on top of those it currently follows) via the integration of tabling in contextual abduction and updating; and (4) Modeling moral permissibility and its justification via counterfactuals, where counterfactuals are used for formulating DDE.
Resumo:
Application of Experimental Design techniques has proven to be essential in various research fields, due to its statistical capability of processing the effect of interactions among independent variables, known as factors, in a system’s response. Advantages of this methodology can be summarized in more resource and time efficient experimentations while providing more accurate results. This research emphasizes the quantification of 4 antioxidants extraction, at two different concentration, prepared according to an experimental procedure and measured by a Photodiode Array Detector. Experimental planning was made following a Central Composite Design, which is a type of DoE that allows to consider the quadratic component in Response Surfaces, a component that includes pure curvature studies on the model produced. This work was executed with the intention of analyzing responses, peak areas obtained from chromatograms plotted by the Detector’s system, and comprehending if the factors considered – acquired from an extensive literary review – produced the expected effect in response. Completion of this work will allow to take conclusions regarding what factors should be considered for the optimization studies of antioxidants extraction in a Oca (Oxalis tuberosa) matrix.
Resumo:
The amorphous silicon photo-sensor studied in this thesis, is a double pin structure (p(a-SiC:H)-i’(a-SiC:H)-n(a-SiC:H)-p(a-SiC:H)-i(a-Si:H)-n(a-Si:H)) sandwiched between two transparent contacts deposited over transparent glass thus with the possibility of illumination on both sides, responding to wave-lengths from the ultra-violet, visible to the near infrared range. The frontal il-lumination surface, glass side, is used for light signal inputs. Both surfaces are used for optical bias, which changes the dynamic characteristics of the photo-sensor resulting in different outputs for the same input. Experimental studies were made with the photo-sensor to evaluate its applicability in multiplexing and demultiplexing several data communication channels. The digital light sig-nal was defined to implement simple logical operations like the NOT, AND, OR, and complex like the XOR, MAJ, full-adder and memory effect. A pro-grammable pattern emission system was built and also those for the validation and recovery of the obtained signals. This photo-sensor has applications in op-tical communications with several wavelengths, as a wavelength detector and to execute directly logical operations over digital light input signals.
Resumo:
This paper presents the design and the prototype implementation of a three-phase power inverter developed to drive a motor-in-wheel. The control system is implemented in a FPGA (Field Programmable Gate Array) device. The paper describes the Field Oriented Control (FOC) algorithm and the Space Vector Modulation (SVM) technique that were implemented. The control platform uses a Spartan-3E FPGA board, programmed with Verilog language. Simulation and experimental results are presented to validate the developed system operation under different load conditions. Finally are presented conclusions based on the experimental results.
Resumo:
About 90% of breast cancers do not cause or are capable of producing death if detected at an early stage and treated properly. Indeed, it is still not known a specific cause for the illness. It may be not only a beginning, but also a set of associations that will determine the onset of the disease. Undeniably, there are some factors that seem to be associated with the boosted risk of the malady. Pondering the present study, different breast cancer risk assessment models where considered. It is our intention to develop a hybrid decision support system under a formal framework based on Logic Programming for knowledge representation and reasoning, complemented with an approach to computing centered on Artificial Neural Networks, to evaluate the risk of developing breast cancer and the respective Degree-of-Confidence that one has on such a happening.
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e de Computadores
Resumo:
El crecimiento exponencial del tráfico de datos es uno de los mayores desafíos que enfrentan actualmente los sistemas de comunicaciones, debiendo los mismos ser capaces de soportar velocidades de procesamiento de datos cada vez mas altas. En particular, el consumo de potencia se ha transformado en uno de los parámetros de diseño más críticos, generando la necesidad de investigar el uso de nuevas arquitecturas y algoritmos para el procesamiento digital de la información. Por otro lado, el análisis y evaluación de nuevas técnicas de procesamiento presenta dificultades dadas las altas velocidades a las que deben operar, resultando frecuentemente ineficiente el uso de la simulación basada en software como método. En este contexto, el uso de electrónica programable ofrece una oportunidad a bajo costo donde no solo se evaluan nuevas técnicas de diseño de alta velocidad sino también se valida su implementación en desarrollos tecnológicos. El presente proyecto tiene como objetivo principal el estudio y desarrollo de nuevas arquitecturas y algoritmos en electrónica programable para el procesamiento de datos a alta velocidad. El método a utilizar será la programación en dispositivos FPGA (Field-Programmable Gate Array) que ofrecen una buena relación costo-beneficio y gran flexibilidad para integrarse con otros dispositivos de comunicaciones. Para la etapas de diseño, simulación y programación se utilizaran herramientas CAD (Computer-Aided Design) orientadas a sistemas electrónicos digitales. El proyecto beneficiara a estudiantes de grado y postgrado de carreras afines a la informática y las telecomunicaciones, contribuyendo al desarrollo de proyectos finales y tesis doctorales. Los resultados del proyecto serán publicados en conferencias y/o revistas nacionales e internacionales y divulgados a través de charlas de difusión y/o encuentros. El proyecto se enmarca dentro de un área de gran importancia para la Provincia de Córdoba, como lo es la informática y las telecomunicaciones, y promete generar conocimiento de gran valor agregado que pueda ser transferido a empresas tecnológicas de la Provincia de Córdoba a través de consultorias o desarrollos de productos.
Resumo:
En dispositivos electrónicos de última generación destinados a funciones de comunicación o control automático, los algoritmos de procesamiento digital de señales trasladados al hardware han ocupado un lugar fundamental. Es decir el estado de arte en el área de las comunicaciones y control puede resumirse en algoritmos basados en procesamiento digital de señales. Las implementaciones digitales de estos algoritmos han sido estudiadas en áreas de la informática desde hace tiempo. Sin embargo, aunque el incremento en la complejidad de los algoritmos modernos permite alcanzar desempeños atractivos en aplicaciones específicas, a su vez impone restricciones en la velocidad de operación que han motivado el diseño directamente en hardware de arquitecturas para alto rendimiento. En este contexto, los circuitos electrónicos basados en lógica programable, principalmente los basados en FPGA (Field-Programmable Gate Array), permiten obtener medidas de desempeño altamente confiables que proporcionan el acercamiento necesario hacia el diseño electrónico de circuitos para aplicaciones específicas “ASIC-VLSI” (Application Specific Integrated Circuit - Very Large Scale Integration). En este proyecto se analiza el diseño y la implementación de aquitecturas electrónicas para el procesamiento digital de señales, con el objeto de obtener medidas reales sobre el comportamiento del canal inalámbrico y su influencia sobre la estimación y el control de trayectoria en vehículos aéreos no tripulados (UAV, Unmanned Aerial Vehicle). Para esto se propone analizar un dispositivo híbrido basado en microcontroladores y circuitos FPGA y sobre este mismo dispositivo implementar mediante algoritmo un control de trayectoria que permita mantener un punto fijo en el centro del cuadro de una cámara de video a bordo de un UAV, que sea eficiente en términos de velocidad de operación, dimensiones y consumo de energía.
Resumo:
El avance en la potencia de cómputo en nuestros días viene dado por la paralelización del procesamiento, dadas las características que disponen las nuevas arquitecturas de hardware. Utilizar convenientemente este hardware impacta en la aceleración de los algoritmos en ejecución (programas). Sin embargo, convertir de forma adecuada el algoritmo en su forma paralela es complejo, y a su vez, esta forma, es específica para cada tipo de hardware paralelo. En la actualidad los procesadores de uso general más comunes son los multicore, procesadores paralelos, también denominados Symmetric Multi-Processors (SMP). Hoy en día es difícil hallar un procesador para computadoras de escritorio que no tengan algún tipo de paralelismo del caracterizado por los SMP, siendo la tendencia de desarrollo, que cada día nos encontremos con procesadores con mayor numero de cores disponibles. Por otro lado, los dispositivos de procesamiento de video (Graphics Processor Units - GPU), a su vez, han ido desarrollando su potencia de cómputo por medio de disponer de múltiples unidades de procesamiento dentro de su composición electrónica, a tal punto que en la actualidad no es difícil encontrar placas de GPU con capacidad de 200 a 400 hilos de procesamiento paralelo. Estos procesadores son muy veloces y específicos para la tarea que fueron desarrollados, principalmente el procesamiento de video. Sin embargo, como este tipo de procesadores tiene muchos puntos en común con el procesamiento científico, estos dispositivos han ido reorientándose con el nombre de General Processing Graphics Processor Unit (GPGPU). A diferencia de los procesadores SMP señalados anteriormente, las GPGPU no son de propósito general y tienen sus complicaciones para uso general debido al límite en la cantidad de memoria que cada placa puede disponer y al tipo de procesamiento paralelo que debe realizar para poder ser productiva su utilización. Los dispositivos de lógica programable, FPGA, son dispositivos capaces de realizar grandes cantidades de operaciones en paralelo, por lo que pueden ser usados para la implementación de algoritmos específicos, aprovechando el paralelismo que estas ofrecen. Su inconveniente viene derivado de la complejidad para la programación y el testing del algoritmo instanciado en el dispositivo. Ante esta diversidad de procesadores paralelos, el objetivo de nuestro trabajo está enfocado en analizar las características especificas que cada uno de estos tienen, y su impacto en la estructura de los algoritmos para que su utilización pueda obtener rendimientos de procesamiento acordes al número de recursos utilizados y combinarlos de forma tal que su complementación sea benéfica. Específicamente, partiendo desde las características del hardware, determinar las propiedades que el algoritmo paralelo debe tener para poder ser acelerado. Las características de los algoritmos paralelos determinará a su vez cuál de estos nuevos tipos de hardware son los mas adecuados para su instanciación. En particular serán tenidos en cuenta el nivel de dependencia de datos, la necesidad de realizar sincronizaciones durante el procesamiento paralelo, el tamaño de datos a procesar y la complejidad de la programación paralela en cada tipo de hardware. Today´s advances in high-performance computing are driven by parallel processing capabilities of available hardware architectures. These architectures enable the acceleration of algorithms when thes ealgorithms are properly parallelized and exploit the specific processing power of the underneath architecture. Most current processors are targeted for general pruposes and integrate several processor cores on a single chip, resulting in what is known as a Symmetric Multiprocessing (SMP) unit. Nowadays even desktop computers make use of multicore processors. Meanwhile, the industry trend is to increase the number of integrated rocessor cores as technology matures. On the other hand, Graphics Processor Units (GPU), originally designed to handle only video processing, have emerged as interesting alternatives to implement algorithm acceleration. Current available GPUs are able to implement from 200 to 400 threads for parallel processing. Scientific computing can be implemented in these hardware thanks to the programability of new GPUs that have been denoted as General Processing Graphics Processor Units (GPGPU).However, GPGPU offer little memory with respect to that available for general-prupose processors; thus, the implementation of algorithms need to be addressed carefully. Finally, Field Programmable Gate Arrays (FPGA) are programmable devices which can implement hardware logic with low latency, high parallelism and deep pipelines. Thes devices can be used to implement specific algorithms that need to run at very high speeds. However, their programmability is harder that software approaches and debugging is typically time-consuming. In this context where several alternatives for speeding up algorithms are available, our work aims at determining the main features of thes architectures and developing the required know-how to accelerate algorithm execution on them. We look at identifying those algorithms that may fit better on a given architecture as well as compleme