953 resultados para Process behavior


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior of poly (L-lactide)-poly(ethylene glycol) ( PLLA-PEG) diblock copolymer was studied by means of real-time WAXD, DSC and POM, and Ozawa equation was used to analyze the kinetics of PLLA-PEG under nonisothermal crystallization conditions. During the crystallization of the high-T-m block (PLLA), the low-T-m block (PEG) acts as a noncrystalline diluent, and the crystallization behavior of PLLA obeys the Ozawa theory. When the PEG block begins to crystallize, the PLLA phase is always partially solidified and the presence of the spherulitic microstructure of PLLA profoundly restricts its crystallization behavior, which results in that the overall crystallization process does not obey the Ozawa equation. Furthermore, the study of the crystalline morphology of PLLA-PEG at different cooling rates indicates that when the cooling rate is from low to high, the crystalline morphology undergoes a transformation from the ring-banded spherulites to the typical Maltese cross spherulites, which experiences the mixed crystalline morphologies of ring-banded and typical Maltese cross spherulites, and the spherulitic size becomes smaller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The experimental data of phase diagrams for both polyethylene oxide/poly(ethylene oxide-b-dimethylsiloxane) binary and toluene/polyethylene oxide/poly(ethylene oxide-b-dimethylsiloxane) ternary polymer-containing systems was obtained at atmosphere pressure by light scattering method. The critical points for some pre-selected compositions and the pressure effect on the phase transition behavior of ternary system were investigated by turbidity measurements. The chosen system is a mixture of ternary which is one of the very few abnormal polymer-containing systems exhibiting pressure-induced both miscibility and immiscibility. This unusual behavior is related to the toluene concentration in the mixtures. The effect of toluene on the phase transition behavior of the ternary polymer-containing mixture was traced. Such behavior can make it possible to process composite materials from incompatible polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, silica-based transparent organic-inorganic hybrid materials were prepared via the sol-gel process. Tetraethoxysilane (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) were used as the inorganic and organic precursors, respectively. The terbium complex, Tb(Tfacac)(3)phen (Tfacac = 1,1,1-trifluoroacetylacetone, phen = 1, 10-phenanthroline) was successfully doped into organically modified silicate (ormosil) matrix derived from TEOS and GPTMS, and the luminescent properties of the resultant ormosil composite phosphors [ormosil/Th(Tfacac)(3)phen] were investigated compared with those of the Tb(Tfacac)(3)phen incorporated into SiO2 derived from TEOS (labeled as silica/Tb(Tfacac)(3)phen). Both kinds of the materials show the characteristic green emission of Tb3+ ion. The luminescence behavior of the resultant composite products was dependent on the matrix composition. The optimized lanthanide complex concentration in the ormosil/Tb(Tfacac)(3)phen was increased compared with in silica/Tb(Tfacac)(3)phen. Furthermore, the lifetime of Tb3+ in Tb(Tfacac)(3)phen, silica/Tb(Tfacac)(3)phen and ormosil/Tb(Tfacac)(3)phen follows the sequence: onmosil/Tb(Tfacac)(3)phen>silica/Tb(Tfacac)(3)phen>pure Tb(Tfacac)(3)phen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multiple melting behavior of several commercial resins of isotactic polypropylene (iPP) and random copolymer, poly(propylene-co-ethylene) (PPE), after stepwise isothermal crystallization (SIC) were studied by differential scanning calorimeter and wide-angle X-ray diffraction (WAXD). For iPP samples, three typical melting endotherms appeared after SIC process when heating rate was lower than 10 degreesC/min. The WAXD experiments proved that only alpha-form crystal was formed during SIC process and no transition from alpha1- to alpha2-form occurred during heating process. Heating rate dependence for each endotherm was discussed and it was concluded that there were only,two major crystals with different thermal stability. For the PPE sample, more melting endotherms appeared after stepwise isothermal crystallization. The introduction of ethylene comonomer in isotactic propylene backbone further decreased the regularity of molecular chain, and the short isotactic propylene sequences could crystallize into gamma-form crystal having a low melting temperature whereas the long sequences crystallized into alpha-form crystal having high melting temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PVT data of five kinds of biaxially oriented polypropylene (BOPP) Resins was measured by the PVT-100 apparatus. Thermal expansion coefficients (alpha) and isothermal compressibility (beta) were evaluated from Tait equation in the melting state and then compared with those fitted with the value of experiment. The results showed that it was reasonable to calculate alpha and beta with Tait equation in the melting state. At the same time, it was found that thermal expansion coefficients, isothermal compressibility and the melting temperature (T-m) of one of BOPP melts (S28C) were lower than those of the others in the same test conditions, indicating that the volume deformation of S28C resin is' less so that it could be realized to avoid arising surface defects of the film (biaxially oriented polypropylene film) due to. contracting, thereby decrease damage to the film in the subsequence process. Accordingly superior processing properties of S28C resin are confirmed from PVT. speciality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonisothermal crystallization and melting behavior of poly(3-hydroxybutyrate) (PHB) and maleated PHB were investigated by differential scanning calorimetry using various cooling rates. The results show that the crystallization behavior of maleated PHB from the melt greatly depends on cooling rates and its degree of grafting. With the increase in cooling rate, the crystallization process for PHB and maleated PHB begins at lower temperature. For maleated PHB, the introduction of maleic anhydride group hinders its crystallization, causing crystallization and nucleation rates to decrease, and crystallite size distribution becomes wider. The Avrami analysis, modified by Jeziorny, was used to describe the nonisothermal crystallization of PHB and maleated PHB. Double melting peaks for maleated PHB were observed, which was caused by recrystallization during the heating process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, crystallization and melting behavior of metallocene ethylene/alpha-olefin copolymers were investigated by differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The results indicated that the crystallization and melting temperatures for all the samples were directly related to the long ethylene sequences instead of the average sequence length (ASL), whereas the crystallization enthalpy and crystallinity were directly related to ASL, that is, both parameters decreased with a decreasing ASL. Multiple melting peaks were analyzed by thermal analysis. Three phenomena contributed to the multiple melting behaviors after isothermal crystallization, that is, the melting of crystals formed during quenching, the melting-recrystallization process, and the coexistence of different crystal morphologies. Two types of crystal morphologies could coexist in samples having a high comonomer content after isothermal crystallization. They were the chain-folded lamellae formed by long ethylene sequences and the bundlelike crystals formed by short ethylene sequences. The coexistence phenomenon was further proved by the AFM morphological observation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall isothermal crystallization kinetics and melting behavior of poly(beta-hydroxybutyrate) (PHB) and maleated PHB with different graft degree were studied by using differential scanning calorimetry (DSC). The Avrami analysis indicates that the introduction of maleic anhydride results in the decrease in the overall crystallization rate of PHB, but does not affect its nucleation mechanism and geometry of crystal growth. The activation energy of the overall crystallization process increases with the increase in graft degree. The phenomenon of multiple melting endotherms is observed, which results from melting and recrystallization during the DSC heating run.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystallization and melting behavior of short ethylene sequence of metallocene ethylene/alpha -olefin copolymer with high comonomer content have been studied by standard DSC and modulated-temperature differential scanning calorimetry (M-TDSC) technique. In addition to high temperature endotherm around 120 degreesC, a low temperature endotherm is observed at lower temperatures (40-80 degreesC), depending on time and temperature of isothermal crystallization. The peak position of the low temperature endotherm T-m(low) varies linearly with the logarithm of crystallization time and the slope, D, decreases with increasing crystallization temperature T-c. The T-m(low) also depends on the thermal history before the crystallization at T-c, and an extrapolation of T-m(low) (30.6 degreesC) to a few seconds has been obtained after two step isothermal crystallization before the crystallization at 30 degreesC. The T-m(low) is nearly equal to T-c, and it indicates that the initial crystallization at low temperature is nearly reversible. Direct evidence of conformational. entropy change of secondary crystallization has been obtained by using M-TDSC technique. Both the M-TDSC result and the activation energy analysis of temperature dependence suggest that crystal perfection process and conformational entropy decreasing in residual amorphous co-exist during secondary crystallization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new type of inorganic-organic hybrid material incorporating carbon powder and alpha -type 2:18-molybdodiphosphate (P2Mo18) in a methyltrimethoxysilane (MTMOS) based gel has been produced by a sol-gel process and used to fabricate a chemically modified electrode. The P2Mo18-doped carbon ceramic composite electrode was characterized using SEM and cyclic voltammetry. Square-wave voltammetry with an excellent sensitivity was exploited to conveniently investigate the dependence of current and half-wave potential (E-1/2) on pH. The chemically modified electrode has some advantages over the modified film electrodes constructed by the conventional methods, such as long-term stability, reproducibility, and especially repeatability of surface-renewal by simple polishing in the event of surface fouling or dopant leaching. In addition, the modified electrode shows a good catalytic activity for the electrochemical reduction of bromate in an acidic aqueous solution. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple melting behavior was observed in the differential scanning calorimetry (DSC) scans for the isothermally crystallized poly(iminosebacoyl iminodecamethylene) (PA1010) samples. Coexistence of crystal populations with different lamellar thickness in PA1010 was discussed by means of DSC, wide-angle X-ray diffraction (WAXD), and small-angle X-ray scattering techniques. During crystallization of the polymer, a major lamellar crystal population developed first, which possessed a higher melting temperature. However, a small fraction of the polymer formed minor crystal population with thinner lamellae, which was metastable and, upon post-annealing, could grow into more stable and thicker lamellae through melting and recrystallization process. Lamellae insertion or stacks would develop during the post-annealing at a lower temperature for the isothermally crystallized samples; thus, multiple crystal populations with different thickness could be produced. It is the multiple distribution of lamella thickness that gives rise to multiple melting behavior of crystalline polymers. (C) 2000 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, electrode responses to a large number of electroactive species with different standard potentials at the molybdenum oxide-modified carbon fibre microdisk array (CFMA) electrode were investigated. The results demonstrated that the electrochemical behavior for those redox species with formal potentials more positive than similar to 0.0 V at the molybdenum oxide-modified CFMA electrode were affected by the range and direction of the potential scan, which were different from that at a bare CFMA electrode. If the lower limit of the potential scan was more positive than the reduction potential of the molybdenum oxide film, neither the oxidation nor the reduction peaks of the redox species tested could be observed. This indicates that electron transfer between the molybdenum oxide film on the electrode and the electroactive species in solution is blocked due to the existence of a high resistance between the film and electrolyte in these potential ranges. If the lower limit of the potential scan was more negative than the reduction potential of the molybdenum oxide film (similar to - 0.6 V), the oxidation peaks of these species occurred at the potentials near their formal potentials. In addition, the electrochemical behavior of these redox species at the molybdenum oxide-modified CFMA electrode showed a diffusionless electron transfer process. On the other hand, the redox species with formal potentials more negative than similar to - 0.2 V showed similar reversible voltammetric behaviors at both the molybdenum oxide-modified CFMA electrode and the bare electrode. This can be explained by the structure changes of the film before and after reduction of the film. In addition we also observed that the peak currents of some redox species at the modified electrode were much larger than those at a bare electrode under the same conditions, which has been explained by the interaction between these redox species and the reduction state of the molybdenum oxide film. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A functionalized high-density polyethylene (HDPE) with maleic anhydride (MAH) was prepared using a reactive extruding method. This copolymer was used as a compatibilizer of blends of polyamide 6 (PA6) and ultrahigh molecular weight polyethylene (UHMWPE). Morphologies were examined by a scanning electron microscope. It was found that the dimension of UHMWPE and HDPE domains in the PA6 matrix decreased dramatically, compared with that of the uncompatibilized blending system. The size of the UHMWPE domains was reduced from 35 mu m (PA6/UHMWPE, 80/20) to less than 4 mu m (PA6/UHMWPE/HDPE-g-MAH, 80/20/20). The tensile strength and Izod impact strength of PA6/UHMWPE/HDPE-g-MAH (80/20/20) were 1.5 and 1.6 times as high as those of PA6/UHMWPE: (80/20), respectively. This behavior could be attributed to chemical reactions between the anhydride groups of HDPE-g-MAH and the terminal amino groups of PA6 in PA6/UHMWPE/HDPE-g-MAH blends. Thermal analysis was performed to confirm that the above chemical reactions took place during the blending process. (C) 2000 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characterization of free base porphyrin 2,3,7,8,12,13,17,18-octakis(hexyl-thio) tetraazaporphyrin (H(2)OHTTAP) and its zinc(II) complexes [Zn(II)OHTTAP] containing eight thioether groups at the beta -pyrrole positions of the macrocycle was reported. Results obtained by cyclic voltammetry and differential pulse voltammetry indicated a five-electron reduction in five steps for each complex. They were oxidized in two single-electron-transfer steps to yield pi -cation radicals and dications and reduced in three single-electron-transfer steps to yield pi -anion radicals, dianions and trianions, respectively. The redox property of H(2)OHTTAP was unusual as compared to porphyrins (PPs) and phthalocyanines (Pcs). Each process was monitored by in situ thin-layer spectroelectrochemistry, which indicated that only the Ligand was electroactive. The existence of the eight hexylthio groups was responsible for the intrastack interactions and enhanced intracolumnar and intercolumnar electron motions, resulting in improved conductivity. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of isothermal and nonisothermal crystallization kinetics of nylon 66 was carried out using differential scanning calorimetry (DSC). The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and nonisothermal crystallizations of nylon 66. In the isothermal crystallization process, mechanisms of spherulitic nucleation and growth were discussed. The lateral and folding surface free energies determined from the Lauritzen-Hoffman treatment are sigma = 9.77 erg/cm(2) and sigma (e) = 155.48 erg/cm(2), respectively; and the work of chain folding is q = 33.14 kJ/mol. The nonisothermal crystallization kinetics of nylon 66 was analyzed by using the Mo method combined with the Avrami and Ozawa equations. The average Avrami exponent (n) over bar was determined to be 3.45. The activation energies (DeltaE) were determined to be -485.45 kJ/mol and -331.27 kJ/mol, respectively, for the isothermal and nonisothermal crystallization processes by the Arrhenius and the Kissinger methods.