969 resultados para Probability distribution functions
Resumo:
A measurement of W boson production in lead-lead collisions at sNN−−−√=2.76 TeV is presented. It is based on the analysis of data collected with the ATLAS detector at the LHC in 2011 corresponding to an integrated luminosity of 0.14 nb−1 and 0.15 nb−1 in the muon and electron decay channels, respectively. The differential production cross-sections and lepton charge asymmetry are each measured as a function of the average number of participating nucleons ⟨Npart⟩ and absolute pseudorapidity of the charged lepton. The results are compared to predictions based on next-to-leading-order QCD calculations. These measurements are, in principle, sensitive to possible nuclear modifications to the parton distribution functions and also provide information on scaling of W boson production in multi-nucleon systems.
Resumo:
Double-differential three-jet production cross-sections are measured in proton--proton collisions at a centre-of-mass energy of s√=7TeV using the ATLAS detector at the Large Hadron Collider. The measurements are presented as a function of the three-jet mass (mjjj), in bins of the sum of the absolute rapidity separations between the three leading jets (|Y∗|). Invariant masses extending up to 5 TeV are reached for 8<|Y∗|<10. These measurements use a sample of data recorded using the ATLAS detector in 2011, which corresponds to an integrated luminosity of 4.51fb−1. Jets are identified using the anti-kt algorithm with two different jet radius parameters, R=0.4 and R=0.6. The dominant uncertainty in these measurements comes from the jet energy scale. Next-to-leading-order QCD calculations corrected to account for non-perturbative effects are compared to the measurements. Good agreement is found between the data and the theoretical predictions based on most of the available sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.
Resumo:
The classical central limit theorem states the uniform convergence of the distribution functions of the standardized sums of independent and identically distributed square integrable real-valued random variables to the standard normal distribution function. While first versions of the central limit theorem are already due to Moivre (1730) and Laplace (1812), a systematic study of this topic started at the beginning of the last century with the fundamental work of Lyapunov (1900, 1901). Meanwhile, extensions of the central limit theorem are available for a multitude of settings. This includes, e.g., Banach space valued random variables as well as substantial relaxations of the assumptions of independence and identical distributions. Furthermore, explicit error bounds are established and asymptotic expansions are employed to obtain better approximations. Classical error estimates like the famous bound of Berry and Esseen are stated in terms of absolute moments of the random summands and therefore do not reflect a potential closeness of the distributions of the single random summands to a normal distribution. Non-classical approaches take this issue into account by providing error estimates based on, e.g., pseudomoments. The latter field of investigation was initiated by work of Zolotarev in the 1960's and is still in its infancy compared to the development of the classical theory. For example, non-classical error bounds for asymptotic expansions seem not to be available up to now ...
Resumo:
Ma (1996) studied the random order mechanism, a matching mechanism suggested by Roth and Vande Vate (1990) for marriage markets. By means of an example he showed that the random order mechanism does not always reach all stable matchings. Although Ma's (1996) result is true, we show that the probability distribution he presented - and therefore the proof of his Claim 2 - is not correct. The mistake in the calculations by Ma (1996) is due to the fact that even though the example looks very symmetric, some of the calculations are not as ''symmetric.''
Resumo:
We motivate procedural fairness for matching mechanisms and study two procedurally fair and stable mechanisms: employment by lotto (Aldershof et al., 1999) and the random order mechanism (Roth and Vande Vate, 1990, Ma, 1996). For both mechanisms we give various examples of probability distributions on the set of stable matchings and discuss properties that differentiate employment by lotto and the random order mechanism. Finally, we consider an adjustment of the random order mechanism, the equitable random order mechanism, that combines aspects of procedural and "endstate'' fairness. Aldershof et al. (1999) and Ma (1996) that exist on the probability distribution induced by both mechanisms. Finally, we consider an adjustment of the random order mechanism, the equitable random order mechanism.
Resumo:
When two candidates of different quality compete in a one dimensional policy space, the equilibrium outcomes are asymmetric and do not correspond to the median. There are three main effects. First, the better candidate adopts more centrist policies than the worse candidate. Second, the equilibrium is statistical, in the sense that it predicts a probability distribution of outcomes rather than a single degenerate outcome. Third, the equilibrium varies systematically with the level of uncertainty about the location of the median voter. We test these three predictions using laboratory experiments, and find strong support for all three. We also observe some biases and show that they canbe explained by quantal response equilibrium.
Resumo:
The paper proposes and applies statistical tests for poverty dominance that check for whether poverty comparisons can be made robustly over ranges of poverty lines and classes of poverty indices. This helps provide both normative and statistical confidence in establishing poverty rankings across distributions. The tests, which can take into account the complex sampling procedures that are typically used by statistical agencies to generate household-level surveys, are implemented using the Canadian Survey of Labour and Income Dynamics (SLID) for 1996, 1999 and 2002. Although the yearly cumulative distribution functions cross at the lower tails of the distributions, the more recent years tend to dominate earlier years for a relatively wide range of poverty lines. Failing to take into account SLID's sampling variability (as is sometimes done) can inflate significantly one's confidence in ranking poverty. Taking into account SLID's complex sampling design (as has not been done before) can also decrease substantially the range of poverty lines over which a poverty ranking can be inferred.
Resumo:
We study the lysis timing of a bacteriophage population by means of a continuously infection-age-structured population dynamics model. The features of the model are the infection process of bacteria, the natural death process, and the lysis process which means the replication of bacteriophage viruses inside bacteria and the destruction of them. We consider that the length of the lysis timing (or latent period) is distributed according to a general probability distribution function. We have carried out an optimization procedure and we have found the latent period corresponding to the maximal fitness (i.e. maximal growth rate) of the bacteriophage population.
Resumo:
Minimal models for the explanation of decision-making in computational neuroscience are based on the analysis of the evolution for the average firing rates of two interacting neuron populations. While these models typically lead to multi-stable scenario for the basic derived dynamical systems, noise is an important feature of the model taking into account finite-size effects and robustness of the decisions. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker-Planck partial differential equation. In particular, we discuss the existence, positivity and uniqueness for the solution of the stationary equation, as well as for the time evolving problem. Moreover, we prove convergence of the solution to the the stationary state representing the probability distribution of finding the neuron families in each of the decision states characterized by their average firing rates. Finally, we propose a numerical scheme allowing for simulations performed on the Fokker-Planck equation which are in agreement with those obtained recently by a moment method applied to the stochastic differential system. Our approach leads to a more detailed analytical and numerical study of this decision-making model in computational neuroscience.
Resumo:
Half-lives of radionuclides span more than 50 orders of magnitude. We characterize the probability distribution of this broad-range data set at the same time that explore a method for fitting power-laws and testing goodness-of-fit. It is found that the procedure proposed recently by Clauset et al. [SIAM Rev. 51, 661 (2009)] does not perform well as it rejects the power-law hypothesis even for power-law synthetic data. In contrast, we establish the existence of a power-law exponent with a value around 1.1 for the half-life density, which can be explained by the sharp relationship between decay rate and released energy, for different disintegration types. For the case of alpha emission, this relationship constitutes an original mechanism of power-law generation.
Resumo:
Report for the scientific sojourn at the University of Reading, United Kingdom, from January until May 2008. The main objectives have been firstly to infer population structure and parameters in demographic models using a total of 13 microsatellite loci for genotyping approximately 30 individuals per population in 10 Palinurus elephas populations both from Mediterranean and Atlantic waters. Secondly, developing statistical methods to identify discrepant loci, possibly under selection and implement those methods using the R software environment. It is important to consider that the calculation of the probability distribution of the demographic and mutational parameters for a full genetic data set is numerically difficult for complex demographic history (Stephens 2003). The Approximate Bayesian Computation (ABC), based on summary statistics to infer posterior distributions of variable parameters without explicit likelihood calculations, can surmount this difficulty. This would allow to gather information on different demographic prior values (i.e. effective population sizes, migration rate, microsatellite mutation rate, mutational processes) and assay the sensitivity of inferences to demographic priors by assuming different priors.
Resumo:
Dengue fever is currently the most important arthropod-borne viral disease in Brazil. Mathematical modeling of disease dynamics is a very useful tool for the evaluation of control measures. To be used in decision-making, however, a mathematical model must be carefully parameterized and validated with epidemiological and entomological data. In this work, we developed a simple dengue model to answer three questions: (i) which parameters are worth pursuing in the field in order to develop a dengue transmission model for Brazilian cities; (ii) how vector density spatial heterogeneity influences control efforts; (iii) with a degree of uncertainty, what is the invasion potential of dengue virus type 4 (DEN-4) in Rio de Janeiro city. Our model consists of an expression for the basic reproductive number (R0) that incorporates vector density spatial heterogeneity. To deal with the uncertainty regarding parameter values, we parameterized the model using a priori probability density functions covering a range of plausible values for each parameter. Using the Latin Hypercube Sampling procedure, values for the parameters were generated. We conclude that, even in the presence of vector spatial heterogeneity, the two most important entomological parameters to be estimated in the field are the mortality rate and the extrinsic incubation period. The spatial heterogeneity of the vector population increases the risk of epidemics and makes the control strategies more complex. At last, we conclude that Rio de Janeiro is at risk of a DEN-4 invasion. Finally, we stress the point that epidemiologists, mathematicians, and entomologists need to interact more to find better approaches to the measuring and interpretation of the transmission dynamics of arthropod-borne diseases.
Resumo:
Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. Recent advances in machine learning offer a novel approach to model spatial distribution of petrophysical properties in complex reservoirs alternative to geostatistics. The approach is based of semisupervised learning, which handles both ?labelled? observed data and ?unlabelled? data, which have no measured value but describe prior knowledge and other relevant data in forms of manifolds in the input space where the modelled property is continuous. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic geological features and describe stochastic variability and non-uniqueness of spatial properties. On the other hand, it is able to capture and preserve key spatial dependencies such as connectivity of high permeability geo-bodies, which is often difficult in contemporary petroleum reservoir studies. Semi-supervised SVR as a data driven algorithm is designed to integrate various kind of conditioning information and learn dependences from it. The semi-supervised SVR model is able to balance signal/noise levels and control the prior belief in available data. In this work, stochastic semi-supervised SVR geomodel is integrated into Bayesian framework to quantify uncertainty of reservoir production with multiple models fitted to past dynamic observations (production history). Multiple history matched models are obtained using stochastic sampling and/or MCMC-based inference algorithms, which evaluate posterior probability distribution. Uncertainty of the model is described by posterior probability of the model parameters that represent key geological properties: spatial correlation size, continuity strength, smoothness/variability of spatial property distribution. The developed approach is illustrated with a fluvial reservoir case. The resulting probabilistic production forecasts are described by uncertainty envelopes. The paper compares the performance of the models with different combinations of unknown parameters and discusses sensitivity issues.
Resumo:
In the forensic examination of DNA mixtures, the question of how to set the total number of contributors (N) presents a topic of ongoing interest. Part of the discussion gravitates around issues of bias, in particular when assessments of the number of contributors are not made prior to considering the genotypic configuration of potential donors. Further complication may stem from the observation that, in some cases, there may be numbers of contributors that are incompatible with the set of alleles seen in the profile of a mixed crime stain, given the genotype of a potential contributor. In such situations, procedures that take a single and fixed number contributors as their output can lead to inferential impasses. Assessing the number of contributors within a probabilistic framework can help avoiding such complication. Using elements of decision theory, this paper analyses two strategies for inference on the number of contributors. One procedure is deterministic and focuses on the minimum number of contributors required to 'explain' an observed set of alleles. The other procedure is probabilistic using Bayes' theorem and provides a probability distribution for a set of numbers of contributors, based on the set of observed alleles as well as their respective rates of occurrence. The discussion concentrates on mixed stains of varying quality (i.e., different numbers of loci for which genotyping information is available). A so-called qualitative interpretation is pursued since quantitative information such as peak area and height data are not taken into account. The competing procedures are compared using a standard scoring rule that penalizes the degree of divergence between a given agreed value for N, that is the number of contributors, and the actual value taken by N. Using only modest assumptions and a discussion with reference to a casework example, this paper reports on analyses using simulation techniques and graphical models (i.e., Bayesian networks) to point out that setting the number of contributors to a mixed crime stain in probabilistic terms is, for the conditions assumed in this study, preferable to a decision policy that uses categoric assumptions about N.
Resumo:
OBJECTIVE Serum levels of soluble TNF-like weak inducer of apoptosis (sTWEAK) and its scavenger receptor CD163 (sCD163) have been linked to insulin resistance. We analysed the usefulness of these cytokines as biomarkers of type 2 diabetes in a Spanish cohort, together with their relationship to food consumption in the setting of the Di@bet.es study. RESEARCH DESIGN AND METHODS This is a cross-sectional, matched case-control study of 514 type 2 diabetes subjects and 517 controls with a Normal Oral Glucose Tolerance Test (NOGTT), using data from the Di@bet.es study. Study variables included clinical and demographic structured survey, food frequency questionnaire and physical examination. Serum concentrations of sTWEAK and sCD163 were measured by ELISA. Linear regression analysis determined which variables were related to sTWEAK and sCD163 levels. Logistic regression analysis was used to estimate odd ratios of presenting type 2 diabetes. RESULTS sCD163 concentrations and sCD163/sTWEAK ratio were 11.0% and 15.0% higher, respectively, (P<0.001) in type 2 diabetes than in controls. Following adjustment for various confounders, the OR for presenting type 2 diabetes in subjects in the highest vs the lowest tertile of sCD163 was [(OR), 2,01 (95%CI, 1,46-2,97); P for trend <0.001]. Coffee and red wine consumption was negatively associated with serum levels of sCD163 (P = 0.0001 and; P = 0.002 for coffee and red wine intake, respectively). CONCLUSIONS High circulating levels of sCD163 are associated with type 2 diabetes in the Spanish population. The association between coffee and red wine intake and these biomarkers deserves further study to confirm its potential role in type 2 diabetes.