985 resultados para Probabilistic Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean–sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72–1.05) Gt C yr−1, that is within the lower half of previously published estimates (0.4–1.8 Gt C yr−1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo–Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system models to minimise computational costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network building and exchange of information by people within networks is crucial to the innovation process. Contrary to older models, in social networks the flow of information is noncontinuous and nonlinear. There are critical barriers to information flow that operate in a problematic manner. New models and new analytic tools are needed for these systems. This paper introduces the concept of virtual circuits and draws on recent concepts of network modelling and design to introduce a probabilistic switch theory that can be described using matrices. It can be used to model multistep information flow between people within organisational networks, to provide formal definitions of efficient and balanced networks and to describe distortion of information as it passes along human communication channels. The concept of multi-dimensional information space arises naturally from the use of matrices. The theory and the use of serial diagonal matrices have applications to organisational design and to the modelling of other systems. It is hypothesised that opinion leaders or creative individuals are more likely to emerge at information-rich nodes in networks. A mathematical definition of such nodes is developed and it does not invariably correspond with centrality as defined by early work on networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study addresses the problem of predicting the properties of multicomponent systems from those of corresponding binary systems. Two types of multicomponent polynomial models have been analysed. A probabilistic interpretation of the parameters of the Polynomial model, which explicitly relates them with the Gibbs free energies of the generalised quasichemical reactions, is proposed. The presented treatment provides a theoretical justification for such parameters. A methodology of estimating the ternary interaction parameter from the binary ones is presented. The methodology provides a way in which the power series multicomponent models, where no projection is required, could be incorporated into the Calphad approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To navigate successfully in a novel environment a robot needs to be able to Simultaneously Localize And Map (SLAM) its surroundings. The most successful solutions to this problem so far have involved probabilistic algorithms, but there has been much promising work involving systems based on the workings of part of the rodent brain known as the hippocampus. In this paper we present a biologically plausible system called RatSLAM that uses competitive attractor networks to carry out SLAM in a probabilistic manner. The system can effectively perform parameter self-calibration and SLAM in onedimension. Tests in two dimensional environments revealed the inability of the RatSLAM system to maintain multiple pose hypotheses in the face of ambiguous visual input. These results support recent rat experimentation that suggest current competitive attractor models are not a complete solution to the hippocampal modelling problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a combination of local linear PCA projections. However, conventional PCA does not correspond to a probability density, and so there is no unique way to combine PCA models. Previous attempts to formulate mixture models for PCA have therefore to some extent been ad hoc. In this paper, PCA is formulated within a maximum-likelihood framework, based on a specific form of Gaussian latent variable model. This leads to a well-defined mixture model for probabilistic principal component analysers, whose parameters can be determined using an EM algorithm. We discuss the advantages of this model in the context of clustering, density modelling and local dimensionality reduction, and we demonstrate its application to image compression and handwritten digit recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Letter addresses image segmentation via a generative model approach. A Bayesian network (BNT) in the space of dyadic wavelet transform coefficients is introduced to model texture images. The model is similar to a Hidden Markov model (HMM), but with non-stationary transitive conditional probability distributions. It is composed of discrete hidden variables and observable Gaussian outputs for wavelet coefficients. In particular, the Gabor wavelet transform is considered. The introduced model is compared with the simplest joint Gaussian probabilistic model for Gabor wavelet coefficients for several textures from the Brodatz album [1]. The comparison is based on cross-validation and includes probabilistic model ensembles instead of single models. In addition, the robustness of the models to cope with additive Gaussian noise is investigated. We further study the feasibility of the introduced generative model for image segmentation in the novelty detection framework [2]. Two examples are considered: (i) sea surface pollution detection from intensity images and (ii) image segmentation of the still images with varying illumination across the scene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amongst all the objectives in the study of time series, uncovering the dynamic law of its generation is probably the most important. When the underlying dynamics are not available, time series modelling consists of developing a model which best explains a sequence of observations. In this thesis, we consider hidden space models for analysing and describing time series. We first provide an introduction to the principal concepts of hidden state models and draw an analogy between hidden Markov models and state space models. Central ideas such as hidden state inference or parameter estimation are reviewed in detail. A key part of multivariate time series analysis is identifying the delay between different variables. We present a novel approach for time delay estimating in a non-stationary environment. The technique makes use of hidden Markov models and we demonstrate its application for estimating a crucial parameter in the oil industry. We then focus on hybrid models that we call dynamical local models. These models combine and generalise hidden Markov models and state space models. Probabilistic inference is unfortunately computationally intractable and we show how to make use of variational techniques for approximating the posterior distribution over the hidden state variables. Experimental simulations on synthetic and real-world data demonstrate the application of dynamical local models for segmenting a time series into regimes and providing predictive distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis introduces a flexible visual data exploration framework which combines advanced projection algorithms from the machine learning domain with visual representation techniques developed in the information visualisation domain to help a user to explore and understand effectively large multi-dimensional datasets. The advantage of such a framework to other techniques currently available to the domain experts is that the user is directly involved in the data mining process and advanced machine learning algorithms are employed for better projection. A hierarchical visualisation model guided by a domain expert allows them to obtain an informed segmentation of the input space. Two other components of this thesis exploit properties of these principled probabilistic projection algorithms to develop a guided mixture of local experts algorithm which provides robust prediction and a model to estimate feature saliency simultaneously with the training of a projection algorithm.Local models are useful since a single global model cannot capture the full variability of a heterogeneous data space such as the chemical space. Probabilistic hierarchical visualisation techniques provide an effective soft segmentation of an input space by a visualisation hierarchy whose leaf nodes represent different regions of the input space. We use this soft segmentation to develop a guided mixture of local experts (GME) algorithm which is appropriate for the heterogeneous datasets found in chemoinformatics problems. Moreover, in this approach the domain experts are more involved in the model development process which is suitable for an intuition and domain knowledge driven task such as drug discovery. We also derive a generative topographic mapping (GTM) based data visualisation approach which estimates feature saliency simultaneously with the training of a visualisation model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper concerns the problem of agent trust in an electronic market place. We maintain that agent trust involves making decisions under uncertainty and therefore the phenomenon should be modelled probabilistically. We therefore propose a probabilistic framework that models agent interactions as a Hidden Markov Model (HMM). The observations of the HMM are the interaction outcomes and the hidden state is the underlying probability of a good outcome. The task of deciding whether to interact with another agent reduces to probabilistic inference of the current state of that agent given all previous interaction outcomes. The model is extended to include a probabilistic reputation system which involves agents gathering opinions about other agents and fusing them with their own beliefs. Our system is fully probabilistic and hence delivers the following improvements with respect to previous work: (a) the model assumptions are faithfully translated into algorithms; our system is optimal under those assumptions, (b) It can account for agents whose behaviour is not static with time (c) it can estimate the rate with which an agent's behaviour changes. The system is shown to significantly outperform previous state-of-the-art methods in several numerical experiments. Copyright © 2010, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conceptual foundations of the models and procedures for prediction of the avalanche-dangerous situations initiation are considered. The interpretation model for analysis of the avalanche-dangerous situations initiation based on the definition of probabilities of correspondence of studied parameters to the probabilistic distributions of avalanche-dangerous or avalanche non-dangerous situations is offered. The possibility to apply such a model to the real data is considered. The main approaches to the use of multiple representations for the avalanche dangerous situations initiation analysis are generalized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study a class of models used with success in the modelling of climatological sequences. These models are based on the notion of renewal. At first, we examine the probabilistic aspects of these models to afterwards study the estimation of their parameters and their asymptotical properties, in particular the consistence and the normality. We will discuss for applications, two particular classes of alternating renewal processes at discrete time. The first class is defined by laws of sojourn time that are translated negative binomial laws and the second class, suggested by Green is deduced from alternating renewal process in continuous time with sojourn time laws which are exponential laws with parameters α^0 and α^1 respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an effective decision making system for leak detection based on multiple generalized linear models and clustering techniques. The training data for the proposed decision system is obtained by setting up an experimental pipeline fully operational distribution system. The system is also equipped with data logging for three variables; namely, inlet pressure, outlet pressure, and outlet flow. The experimental setup is designed such that multi-operational conditions of the distribution system, including multi pressure and multi flow can be obtained. We then statistically tested and showed that pressure and flow variables can be used as signature of leak under the designed multi-operational conditions. It is then shown that the detection of leakages based on the training and testing of the proposed multi model decision system with pre data clustering, under multi operational conditions produces better recognition rates in comparison to the training based on the single model approach. This decision system is then equipped with the estimation of confidence limits and a method is proposed for using these confidence limits for obtaining more robust leakage recognition results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 78A50

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation into karst hazard in southern Ontario has been undertaken with the intention of leading to the development of predictive karst models for this region. The reason these are not currently feasible is a lack of sufficient karst data, though this is not entirely due to the lack of karst features. Geophysical data was collected at Lake on the Mountain, Ontario as part of this karst investigation. This data was collected in order to validate the long-standing hypothesis that Lake on the Mountain was formed from a sinkhole collapse. Sub-bottom acoustic profiling data was collected in order to image the lake bottom sediments and bedrock. Vertical bedrock features interpreted as solutionally enlarged fractures were taken as evidence for karst processes on the lake bottom. Additionally, the bedrock topography shows a narrower and more elongated basin than was previously identified, and this also lies parallel to a mapped fault system in the area. This suggests that Lake on the Mountain was formed over a fault zone which also supports the sinkhole hypothesis as it would provide groundwater pathways for karst dissolution to occur. Previous sediment cores suggest that Lake on the Mountain would have formed at some point during the Wisconsinan glaciation with glacial meltwater and glacial loading as potential contributing factors to sinkhole development. A probabilistic karst model for the state of Kentucky, USA, has been generated using the Weights of Evidence method. This model is presented as an example of the predictive capabilities of these kind of data-driven modelling techniques and to show how such models could be applied to karst in Ontario. The model was able to classify 70% of the validation dataset correctly while minimizing false positive identifications. This is moderately successful and could stand to be improved. Finally, suggestions to improving the current karst model of southern Ontario are suggested with the goal of increasing investigation into karst in Ontario and streamlining the reporting system for sinkholes, caves, and other karst features so as to improve the current Ontario karst database.