854 resultados para Price cycles
Resumo:
In this paper, a detailed thermodynamic performance analysis of a transcritical condensing (TC) cycle is performed with pure CO2 and a blend of 48.5 % propane with 51.5 % CO2 as working fluids. A realistic thermodynamic model is used incorporating irreversibilities in turbo-machineries and heat exchangers. The Key finding is that the addition of propane elevates the heat rejection temperature, but does not impair any of the performance indicators. Such a fluid may be useful for power generation in concentrated solar power applications by using which a hike of up to 2 % can be realized in the thermal efficiency of a power plant.
Resumo:
Using high-resolution 3D and 2D (axisymmetric) hydrodynamic simulations in spherical geometry, we study the evolution of cool cluster cores heated by feedback-driven bipolar active galactic nuclei (AGNs) jets. Condensation of cold gas, and the consequent enhanced accretion, is required for AGN feedback to balance radiative cooling with reasonable efficiencies, and to match the observed cool core properties. A feedback efficiency (mechanical luminosity approximate to epsilon(M) over dot(acc)c(2); where (M) over dot(acc). is the mass accretion rate at 1 kpc) as small as 6 x 10(-5) is sufficient to reduce the cooling/accretion rate by similar to 10 compared to a pure cooling flow in clusters (with M-200 less than or similar to 7 x 10(14) M-circle dot). This value is much smaller compared to the ones considered earlier, and is consistent with the jet efficiency and the fact that only a small fraction of gas at 1 kpc is accreted onto the supermassive black hole (SMBH). The feedback efficiency in earlier works was so high that the cluster core reached equilibrium in a hot state without much precipitation, unlike what is observed in cool-core clusters. We find hysteresis cycles in all our simulations with cold mode feedback: condensation of cold gas when the ratio of the cooling-time to the free-fall time (t(cool)/t(ff)) is less than or similar to 10 leads to a sudden enhancement in the accretion rate; a large accretion rate causes strong jets and overheating of the hot intracluster medium such that t(cool)/t(ff) > 10; further condensation of cold gas is suppressed and the accretion rate falls, leading to slow cooling of the core and condensation of cold gas, restarting the cycle. Therefore, there is a spread in core properties, such as the jet power, accretion rate, for the same value of core entropy t(cool)/t(ff). A smaller number of cycles is observed for higher efficiencies and for lower mass halos because the core is overheated to a longer cooling time. The 3D simulations show the formation of a few-kpc scale, rotationally supported, massive (similar to 10(11) M-circle dot) cold gas torus. Since the torus gas is not accreted onto the SMBH, it is largely decoupled from the feedback cycle. The radially dominant cold gas (T < 5 x 10(4) K; vertical bar v(r)vertical bar >vertical bar v(phi vertical bar)) consists of fast cold gas uplifted by AGN jets and freely infalling cold gas condensing out of the core. The radially dominant cold gas extends out to 25 kpc for the fiducial run (halo mass 7 x 10(14) M-circle dot and feedback efficiency 6 x 10(-5)), with the average mass inflow rate dominating the outflow rate by a factor of approximate to 2. We compare our simulation results with recent observations.
Resumo:
Until quite recently our understanding of the basic mechanical process responsible for earthquakes and faulting was not well known. It can be argued that this was partly a consequence of the complex nature of fracture in crust and in part because evidence of brittle phenomena in the natural laboratory of the earth is often obliterated or obscured by other geological processes. While it is well understood that the spatial and temporal complexity of earthquakes and the fault structures emerge from geometrical and material built-in heterogeneities, one important open question is how the shearing becomes localized into a band of intense fractures. Here the authors address these questions through a numerical approach of a tectonic plate by considering rockmass heterogeneity both in microscopic scale and in mesoscopic scale. Numerical simulations of the progressive failure leading to collapse under long-range slow driving forces in the far-field show earthquake-like rupture behavior. $En Echelon$ crack-arrays are reproduced in the numerical simulation. It is demonstrated that the underlying fracturing induced acoustic emissions (or seismic events) display self-organized criticality------from disorder to order. The seismic cycles and the geometric structures of the fracture faces, which are found greatly depending on the material heterogeneity (especially on the macroscopic scale), agree with that observed experimentally in real brittle materials. It is concluded that in order to predict a main shock, one must have extremely detailed knowledge on very minor features of the earth's crust far from the place where the earthquake originated. If correct, the model proposed here seemingly provides an explanation as to why earthquakes to date are not predicted so successfully. The reason is not that the authors do not understand earthquake mechanisms very well but that they still know little about our earth's crust.
Resumo:
A criterion of spatial chaos occurring in lattice dynamical systems-heteroclinic cycle-is discussed. It is proved that if the system has asymptotically stable heteroclinic cycle, then it has asymptotically stable homoclinic point which implies spatial chaos.
Resumo:
This paper highlights the role of the terms of trade in the trade channel of propagation of oil price shocks both empirically and theoretically. Empirically, I show that oil price shocks have a large, persistent and statistically significant impact on the US terms of trade. Theoretically, I add oil in the model by Corsetti and Pesenti (2005) and analyse under what conditions the terms of trade plays a relevant role in the international transmission of oil price shocks. With nominal price rigidities and full exchange rate pass-through positive oil price shocks depreciate the currency of the oil importing country. The subsequent negative wealth effect adds to the recessive effect of the supply channel and may trongly reduce the consumption in the oil importing country economy. Without exchange rate pass-through oil shocks transmit to the economy only through the supply channel. The model suggests that a change in the exchange rate pass-through might contribute to explain the evidence of a weaker impact of oil price shocks on the macroeconomic activity in recent times.
Resumo:
In this paper, we show that in order for third-degree price discrimination to increase total output, the demands of the strong markets should be, as conjectured by Robinson (1933), more concave than the demands of the weak markets. By making the distinction between adjusted concavity of the inverse demand and adjusted concavity of the direct demand, we are able to state necessary conditions and sufficient conditions for third-degree price discrimination to increase total output.
Resumo:
Published as an article in: American Economic Review, 2010, vol. 100, issue 4, pages 1601-15.
Resumo:
Published as an article in: Economic Modelling, 2011, vol. 28, issue 3, pages 1140-1149.
Resumo:
This paper analyzes the stationarity of this ratio in the context of a Markov-switching model à la Hamilton (1989) where an asymmetric speed of adjustment is introduced. This particular specification robustly supports a nonlinear reversion process and identifies two relevant episodes: the post-war period from the mid-50’s to the mid-70’s and the so called “90’s boom” period. A three-regime Markov-switching model displays the best regime identification and reveals that only the first part of the 90’s boom (1985-1995) and the post-war period are near-nonstationary states. Interestingly, the last part of the 90’s boom (1996-2000), characterized by a growing price-dividend ratio, is entirely attributed to a regime featuring a highly reverting process.
Resumo:
Potential efficiency gains due to a merger can be used by competition authorities to judge upon proposed mergers. In a world where agents’ efforts, observable or unobservable, affect the success of a production cost reducing project that may be conducted as a stand-alone firm or in a merger, we characterize the merger decision and the type of errors a competition authority may make when it relies on an efficiency defense. In addition, we show that the occurrence of either type of errors is always smaller under the unobservable efforts assumption, than under the observable efforts one.