883 resultados para Preparation and characterisation of xanthates
Resumo:
A composite of cellulose extracted from bagasse with Nb2O5 center dot nH(2)O in three different proportions (16.67, 37.5 and 50.0 wt%) was prepared using the co-precipitation method. The materials were characterized by X-ray diffractometry (XRD), Fourier transform infra-red spectroscopy (FTIR), thermogravimetric analysis (TG/DTG), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). TG data obtained show that the presence of inorganic material influenced slightly the stability of the hybrid material. The precipitation of 16.67 wt.% of oxide was sufficient to inhibit the combustion peaks present in the DSC curve of cellulose. This work will help find new applications for these materials. Published by Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Foi propósito deste estudo analisar a influência da infiltração marginal coronária no comportamento dos tecidos periapicais de dentes de cães após obturação de canal e preparo para pino. Quarenta canais de dentes de cães foram instrumentados e obturados pela técnica da condensação lateral com cones de guta percha e os cimentos Roth e Sealer 26. Após preparo para pino, o remanescente da obturação foi protegido ou não com um plug do cimento temporário Lumicon. Após exposição ao meio oral por 90 dias, os animais foram sacrificados e as peças preparadas para análise histomorfológica. A técnica de Brown e Brenn mostrou 70% de casos com infiltração de microrganismos para o cimento Roth e 20% com o Sealer 26. Quando um plug de Lumicon foi empregado ocorreu 30% de casos de infiltração de microrganismos com o cimento Roth e 0,0% com o cimento Sealer 26. Reação inflamatória crônica foi mais freqüentemente observada com o cimento Roth do que com o Sealer 26. Foi concluído que o plug de Lumicon é eficiente no controle da infiltração coronária (p=0.05) e que o Sealer 26 foi mais biocompatível e selou melhor os canais radiculares do que o cimento Roth (p=0.01).
Resumo:
The aim of this paper is to compare the fluoride-releasing and mechanical properties of an experimental luting glass ionomer cement, which has a modified composition and a commercial luting cement. The experimental powder was obtained by sol-gel process and then, it was used to prepare the experimental cements. The properties of cement pastes, such as setting time and working time, microhardness and diametral tensile strength were determined. Fluoride release from GICs was evaluated at time intervals of 1, 7, 14, 21 and 28 days in deionized water. Atomic force microscopy (AFM) analyses showed that the surface of the experimental cements is more homogeneous than commercial GICs. The mechanical properties and the measure of liberation of fluoride of the two cements were influenced by ratio powder:liquid and chemical composition of the precursor powders. Experimental cements released less fluoride than commercial cements. However, this liberation was more constant during the analyzed period. Thus, the results obtained in this study indicated that the composition of the experimental powder modified by the niobium can lead the formation of the polysalt matrix with good mechanical properties. In other words, we can say that experimental powder offered considerable promise for exploitation in dental field.
Resumo:
Glasses having the composition (100 - x)As2P2S8-xGa(2)S(3) with x ranging from 0 to 50% were investigated to determine the compositional effect on properties and local structure. The glass transition temperature (T-g) and the stability parameter against crystallization (T-x - T-g) increased with the addition of Ga2S3. The structure of these glasses was probed by Raman scattering, Fourier transform infrared (FT-IR) and P-31 nuclear magnetic resonance. on the basis of the observed vibrations and the strength of the P-31-P-31 homonuclear magnetic dipolar coupling, two scenarios can be proposed for the structural evolution induced by the addition of Ga2S3. For x <= 20% we may have the formation of GaS4E- groups (E = nonbonding electron), and for x >= 30% we have depolymerization of the As2P2S8 units and the formation of a network of GaPS4 units with each PS4/2 unit (Q(4)) species carrying a single positive formal charge.
Resumo:
The growth of zinc hexacyanoferrate (ZnHCF) hybrid film on the surface of graphite-epoxy composite (GEC) electrodes was demonstrated by cyclic voltammetry. Surface morphology of the hybrid film was investigated by using scanning electron microscopy. The effect of the type of monovalent cations on the redox behaviour of hybrid film was also studied. This effect indicated that the radius of the hydrated cation mainly determines the ion permeability of the film.The electrochemical behavior of the substituted anilines (procaine and sulfamerazine) in 1 M KCl of the modified GEC electrode showed a decrease of the cathodic currents while increasing the concentration of these analytes. The developed sensor also showed excellent stability for long time usage, higher sensitivity and cost-effective fabrication.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A preparation method for a new electrode material based on the LiNi0.8Co0.2O2/polyaniline (PANI) composite is reported. This material is prepared by in situ polymerization of aniline in the presence of LiNi0.8Co0.2O2 assisted by ultrasonic irradiation. The materials are characterized by XRD, TG-DTA, FTIR, XPS, SEM-EDX, AFM, nitrogen adsorption (BET surface area) and electrical conductivity measurements. PANI in the emeraldine salt form interacts with metal-oxide particles to assure good connectivity. The dc electrical conductivity measurements at room temperature indicate that conductivity values are one order of magnitude higher in the composite than in the oxide alone. This behavior determines better reversibility for Li-insertion in charge-discharge cycles compared to the pristine mixed oxide when used as electrode of lithium batteries. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Pb1- xCaxTiO3 thin films with x = 0.24 composition were prepared by the polymeric precursor method on Pt/Ti/SiO2/Si substrates. The surface morphology and crystal structure, and the ferroelectric and dielectric properties of the films were investigated. X-ray diffraction patterns of the films revealed their polycrystalline nature. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed the surface of these thin films to be smooth, dense and crack-free with low surface roughness. The multilayer Pb1-xCaxTO3 thin films were granular in structure with a grain size of approximately 60-70 nm. The dielectric constant and dissipation factor were, respectively, 174 and 0.04 at a 1 kHz frequency. The 600-nm thick film showed a current density leakage in the order of 10(-7) A/cm(2) in an electric field of about 51 kV/cm. The C-V characteristics of perovskite thin films showed normal ferroelectric behavior. The remanent polarization and coercive field for the deposited films were 15 muC/cm(2) and 150 kV/cm, respectively. (C) 2001 Kluwer Academic Publishers.
Resumo:
This work describes the synthesis of a first-generation iron porphyrin catalyst entrapped in a silica matrix by the sol-gel route, leading to spherical particles. The catalyst was synthesized by the method of Stober, through hydrolysis and condensation of the alkoxysilane TEOS in a mixture of alcohol, water and ammonia, in the presence of the iron porphyrin Fe(TPP)Cl. The relation between particle morphology and catalytic activity of the different Fe(TPP)-SiO2, obtained using different H2O/silane molar ratios and ammonia concentrations in the xerogel syntheses, was studied.The obtained catalysts were characterized by UV-vis spectroscopy, NMR Si-29. thermogravimetric analysis and transmission electron microscopy. Their ability to catalyze (Z)-cyclooctene epoxidation and cyclohexane oxidation was tested using iodosylbenzene as oxygen donor; the oxidation products were analyzed by gas chromatography and the catalysts obtained in a form of particles spherical and monodispersed showed to be a promising catalytic system for selective oxidation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Blends of polyaniline (PAni) and poly(methyl methacrylate) (PMMA) have been produced using core-shell particle synthesis, which is advantageous because it allows changing surface-related properties of PMMA with relatively small amounts of PAW and without the use of organic solvents. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements indicated that the deposition of pollyaniline seems to alter the regular shape of the primary acrylic latex particles. The coverage of PMMA particles by PAW was confirmed by FTIR measurements, where distinct data were obtained from the transmission and diffuse reflectance modes, since the latter is surface sensitive. The zeta potential, which is also a surface-related property, increased with the contents of PAW, as the shells probably became protonated with PAW in the emeraldine salt form. Coverage with PAW did not affect the thermal bulk properties of the PMMA shells.
Resumo:
This work reports on the preparation of erbium and ytterbium co-doped SiO2:HfO2 single mode planar waveguides using the sol-gel method. Silica nanoparticles were prepared from tetraethylorthosilicate in basic media and the films were characterized by transmission electron microscopy, scanning electron microscopy, mechanical profilometry, M-lines spectroscopy based on prism coupling technique, X-ray diffractometry, infrared spectroscopy and photoluminescence spectroscopy. The film thicknesses and the refractive indexes were adjusted in order to satisfy a future efficient coupling to single mode optical fiber. Films suitable for both weak and strong light confinement were prepared varying hafnia concentration into the silica matrix. The lifetime values of erbium I-4(13/2) state were measured in order to investigate the influence of clustering and hydroxyl groups on the fluorescence quantum efficiency of the I-4(13/2) level, responsible for the emission at 1.55 mu m attributed to the I-4(13/2) -> I-4(15/2) transition. The high lifetime values suggest the absence of erbium clusters and the elimination of hydroxyl groups by rapid thermal process. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Silica gel with a surface area of 500 m2g-1 and an average pore diameter of 60 angstrom was chemically modified with Ti(IV) oxide using the grafting method. The amount of metal oxide attached to the surface was 1.8.10(-3) mol g-1. The X-ray photoelectron spectra showed that the metal ion species on the surface are Ti(IV) in TiO2 and MTiO3 (M = Ca2+, Sr2+, Ba2+ and Pb2+), i.e. they have the binding energy of Ti2p3/2 = 458.7 eV. The dehydration of the solid at higher temperature increased the O(II)/Ti (O(II) = oxygen bound to titanium atom) ratio, presumably due to a reticulation of the hydrous Ti(IV) oxide on the silica surface at higher temperatures. Migration of Ti(IV) into the silica gel matrix was observed but the specific surface area was not significantly changed.
Resumo:
This work presents the preparation of SrBi2Nb2O9 (SBN) directly by the combustion synthesis. Strontium nitrate, niobium ammonium oxalate (NH4H2[NbO-(C2O4)(3)].3H(2)O) and bismuth oxide were used as oxidant reactants and urea as fuel. The influence of the fuel was evaluated by the addition of different fuel amounts (50%, 100%, 200% and 300%), 100% being the stoichiometric proportion. The XRD patterns showed that the SBN perovskite crystallized as the majority phase. The as-synthesized stoichiometric powder presented a specific surface area of around 13 m(2)/g and a mean grain size of around 16 nm. Dilatometric measurements showed that the maximum sintering rate occurs at 1275degreesC. The determination of the ferroparaelectric transition showed a Curie temperature (T-c) of 429degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.