171 resultados para Predicate
Resumo:
This book untangles the old grammatical paradox allowing for several negations within the same negative clause through his work of the scope of negations. The scope of each negation over the same predicate is what allows for concordant values. The frequent co-occurrence of negative items, cases of double negation and the expletive negative, as compared to constituent negation, help to demonstrate this. Analysis of these phenomena is based on a large body of data of different varieties of French considered in the light of historical, typological, and psycholinguistic tendencies. While extensive reference is made to current analysis, independence is maintained from any particular model. Starting from syntactic generalisations, the work provides an innovative solution to a classic interpretative issue.
Resumo:
The organization of linguistic meaning is animated by the duality between the sense of signs and the reference to the experience of speakers. How the presuppositions communicated by speakers emanate from the conventional value of signs and their cotextual dependencies is explored in this monograph on the scope and focus of negation. Negation can have scope over the predicate of the sequence in which it is used. The body of data brought together show that a variety of configurations preclude command of the predicate by the negative scoping over it, and that scope is a semantic rather than structural relation. Scope defines the domain in which an item can be focused by negation. Negative focus is dependent on the evocation of an alternative value, which may be generated by lexical antonymy, syntactic determination or contextual corrections. The study of focus and scope of negation on the basis of attested examples from different varieties of French demonstrates how the independently motivated semantic principles of relation to predicate and reference to an alternative value account for the observed effects.
Resumo:
A Quantified Autoepistemic Logic is axiomatized in a monotonic Modal Quantificational Logic whose modal laws are slightly stronger than S5. This Quantified Autoepistemic Logic obeys all the laws of First Order Logic and its L predicate obeys the laws of S5 Modal Logic in every fixed-point. It is proven that this Logic has a kernel not containing L such that L holds for a sentence if and only if that sentence is in the kernel. This result is important because it shows that L is superfluous thereby allowing the ori ginal equivalence to be simplified by eliminating L from it. It is also shown that the Kernel of Quantified Autoepistemic Logic is a generalization of Quantified Reflective Logic, which coincides with it in the propositional case.
Resumo:
The purpose is to develop expert systems where by-analogy reasoning is used. Knowledge “closeness” problems are known to frequently emerge in such systems if knowledge is represented by different production rules. To determine a degree of closeness for production rules a distance between predicates is introduced. Different types of distances between two predicate value distribution functions are considered when predicates are “true”. Asymptotic features and interrelations of distances are studied. Predicate value distribution functions are found by empirical distribution functions, and a procedure is proposed for this purpose. An adequacy of obtained distribution functions is tested on the basis of the statistical 2 χ –criterion and a testing mechanism is discussed. A theorem, by which a simple procedure of measurement of Euclidean distances between distribution function parameters is substituted for a predicate closeness determination one, is proved for parametric distribution function families. The proposed distance measurement apparatus may be applied in expert systems when reasoning is created by analogy.
Resumo:
As the Semantic Web is an open, complex and constantly evolving medium, it is the norm, but not exception that information at different sites is incomplete or inconsistent. This poses challenges for the engineering and development of agent systems on the Semantic Web, since autonomous software agents need to understand, process and aggregate this information. Ontology language OWL provides core language constructs to semantically markup resources on the Semantic Web, on which software agents interact and cooperate to accomplish complex tasks. However, as OWL was designed on top of (a subset of) classic predicate logic, it lacks the ability to reason about inconsistent or incomplete information. Belief-augmented Frames (BAF) is a frame-based logic system that associates with each frame a supporting and a refuting belief value. In this paper, we propose a new ontology language Belief-augmented OWL (BOWL) by integrating OWL DL and BAF to incorporate the notion of confidence. BOWL is paraconsistent, hence it can perform useful reasoning services in the presence of inconsistencies and incompleteness. We define the abstract syntax and semantics of BOWL by extending those of OWL. We have proposed reasoning algorithms for various reasoning tasks in the BOWL framework and we have implemented the algorithms using the constraint logic programming framework. One example in the sensor fusion domain is presented to demonstrate the application of BOWL.
Resumo:
A methodology for formally modeling and analyzing software architecture of mobile agent systems provides a solid basis to develop high quality mobile agent systems, and the methodology is helpful to study other distributed and concurrent systems as well. However, it is a challenge to provide the methodology because of the agent mobility in mobile agent systems.^ The methodology was defined from two essential parts of software architecture: a formalism to define the architectural models and an analysis method to formally verify system properties. The formalism is two-layer Predicate/Transition (PrT) nets extended with dynamic channels, and the analysis method is a hierarchical approach to verify models on different levels. The two-layer modeling formalism smoothly transforms physical models of mobile agent systems into their architectural models. Dynamic channels facilitate the synchronous communication between nets, and they naturally capture the dynamic architecture configuration and agent mobility of mobile agent systems. Component properties are verified based on transformed individual components, system properties are checked in a simplified system model, and interaction properties are analyzed on models composing from involved nets. Based on the formalism and the analysis method, this researcher formally modeled and analyzed a software architecture of mobile agent systems, and designed an architectural model of a medical information processing system based on mobile agents. The model checking tool SPIN was used to verify system properties such as reachability, concurrency and safety of the medical information processing system. ^ From successful modeling and analyzing the software architecture of mobile agent systems, the conclusion is that PrT nets extended with channels are a powerful tool to model mobile agent systems, and the hierarchical analysis method provides a rigorous foundation for the modeling tool. The hierarchical analysis method not only reduces the complexity of the analysis, but also expands the application scope of model checking techniques. The results of formally modeling and analyzing the software architecture of the medical information processing system show that model checking is an effective and an efficient way to verify software architecture. Moreover, this system shows a high level of flexibility, efficiency and low cost of mobile agent technologies. ^
Resumo:
Modern software systems are often large and complicated. To better understand, develop, and manage large software systems, researchers have studied software architectures that provide the top level overall structural design of software systems for the last decade. One major research focus on software architectures is formal architecture description languages, but most existing research focuses primarily on the descriptive capability and puts less emphasis on software architecture design methods and formal analysis techniques, which are necessary to develop correct software architecture design. ^ Refinement is a general approach of adding details to a software design. A formal refinement method can further ensure certain design properties. This dissertation proposes refinement methods, including a set of formal refinement patterns and complementary verification techniques, for software architecture design using Software Architecture Model (SAM), which was developed at Florida International University. First, a general guideline for software architecture design in SAM is proposed. Second, specification construction through property-preserving refinement patterns is discussed. The refinement patterns are categorized into connector refinement, component refinement and high-level Petri nets refinement. These three levels of refinement patterns are applicable to overall system interaction, architectural components, and underlying formal language, respectively. Third, verification after modeling as a complementary technique to specification refinement is discussed. Two formal verification tools, the Stanford Temporal Prover (STeP) and the Simple Promela Interpreter (SPIN), are adopted into SAM to develop the initial models. Fourth, formalization and refinement of security issues are studied. A method for security enforcement in SAM is proposed. The Role-Based Access Control model is formalized using predicate transition nets and Z notation. The patterns of enforcing access control and auditing are proposed. Finally, modeling and refining a life insurance system is used to demonstrate how to apply the refinement patterns for software architecture design using SAM and how to integrate the access control model. ^ The results of this dissertation demonstrate that a refinement method is an effective way to develop a high assurance system. The method developed in this dissertation extends existing work on modeling software architectures using SAM and makes SAM a more usable and valuable formal tool for software architecture design. ^
Resumo:
Access control (AC) limits access to the resources of a system only to authorized entities. Given that information systems today are increasingly interconnected, AC is extremely important. The implementation of an AC service is a complicated task. Yet the requirements to an AC service vary a lot. Accordingly, the design of an AC service should be flexible and extensible in order to save development effort and time. Unfortunately, with conventional object-oriented techniques, when an extension has not been anticipated at the design time, the modification incurred by the extension is often invasive. Invasive changes destroy design modularity, further deteriorate design extensibility, and even worse, they reduce product reliability. ^ A concern is crosscutting if it spans multiple object-oriented classes. It was identified that invasive changes were due to the crosscutting nature of most unplanned extensions. To overcome this problem, an aspect-oriented design approach for AC services was proposed, as aspect-oriented techniques could effectively encapsulate crosscutting concerns. The proposed approach was applied to develop an AC framework that supported role-based access control model. In the framework, the core role-based access control mechanism is given in an object-oriented design, while each extension is captured as an aspect. The resulting framework is well-modularized, flexible, and most importantly, supports noninvasive adaptation. ^ In addition, a process to formalize the aspect-oriented design was described. The purpose is to provide high assurance for AC services. Object-Z was used to specify the static structure and Predicate/Transition net was used to model the dynamic behavior. Object-Z was extended to facilitate specification in an aspect-oriented style. The process of formal modeling helps designers to enhance their understanding of the design, hence to detect problems. Furthermore, the specification can be mathematically verified. This provides confidence that the design is correct. It was illustrated through an example that the model was ready for formal analysis. ^
Resumo:
Shipboard power systems have different characteristics than the utility power systems. In the Shipboard power system it is crucial that the systems and equipment work at their peak performance levels. One of the most demanding aspects for simulations of the Shipboard Power Systems is to connect the device under test to a real-time simulated dynamic equivalent and in an environment with actual hardware in the Loop (HIL). The real time simulations can be achieved by using multi-distributed modeling concept, in which the global system model is distributed over several processors through a communication link. The advantage of this approach is that it permits the gradual change from pure simulation to actual application. In order to perform system studies in such an environment physical phase variable models of different components of the shipboard power system were developed using operational parameters obtained from finite element (FE) analysis. These models were developed for two types of studies low and high frequency studies. Low frequency studies are used to examine the shipboard power systems behavior under load switching, and faults. High-frequency studies were used to predict abnormal conditions due to overvoltage, and components harmonic behavior. Different experiments were conducted to validate the developed models. The Simulation and experiment results show excellent agreement. The shipboard power systems components behavior under internal faults was investigated using FE analysis. This developed technique is very curial in the Shipboard power systems faults detection due to the lack of comprehensive fault test databases. A wavelet based methodology for feature extraction of the shipboard power systems current signals was developed for harmonic and fault diagnosis studies. This modeling methodology can be utilized to evaluate and predicate the NPS components future behavior in the design stage which will reduce the development cycles, cut overall cost, prevent failures, and test each subsystem exhaustively before integrating it into the system.
Resumo:
In the past two decades, multi-agent systems (MAS) have emerged as a new paradigm for conceptualizing large and complex distributed software systems. A multi-agent system view provides a natural abstraction for both the structure and the behavior of modern-day software systems. Although there were many conceptual frameworks for using multi-agent systems, there was no well established and widely accepted method for modeling multi-agent systems. This dissertation research addressed the representation and analysis of multi-agent systems based on model-oriented formal methods. The objective was to provide a systematic approach for studying MAS at an early stage of system development to ensure the quality of design. ^ Given that there was no well-defined formal model directly supporting agent-oriented modeling, this study was centered on three main topics: (1) adapting a well-known formal model, predicate transition nets (PrT nets), to support MAS modeling; (2) formulating a modeling methodology to ease the construction of formal MAS models; and (3) developing a technique to support machine analysis of formal MAS models using model checking technology. PrT nets were extended to include the notions of dynamic structure, agent communication and coordination to support agent-oriented modeling. An aspect-oriented technique was developed to address the modularity of agent models and compositionality of incremental analysis. A set of translation rules were defined to systematically translate formal MAS models to concrete models that can be verified through the model checker SPIN (Simple Promela Interpreter). ^ This dissertation presents the framework developed for modeling and analyzing MAS, including a well-defined process model based on nested PrT nets, and a comprehensive methodology to guide the construction and analysis of formal MAS models.^
Resumo:
Petri Nets are a formal, graphical and executable modeling technique for the specification and analysis of concurrent and distributed systems and have been widely applied in computer science and many other engineering disciplines. Low level Petri nets are simple and useful for modeling control flows but not powerful enough to define data and system functionality. High level Petri nets (HLPNs) have been developed to support data and functionality definitions, such as using complex structured data as tokens and algebraic expressions as transition formulas. Compared to low level Petri nets, HLPNs result in compact system models that are easier to be understood. Therefore, HLPNs are more useful in modeling complex systems. ^ There are two issues in using HLPNs—modeling and analysis. Modeling concerns the abstracting and representing the systems under consideration using HLPNs, and analysis deals with effective ways study the behaviors and properties of the resulting HLPN models. In this dissertation, several modeling and analysis techniques for HLPNs are studied, which are integrated into a framework that is supported by a tool. ^ For modeling, this framework integrates two formal languages: a type of HLPNs called Predicate Transition Net (PrT Net) is used to model a system's behavior and a first-order linear time temporal logic (FOLTL) to specify the system's properties. The main contribution of this dissertation with regard to modeling is to develop a software tool to support the formal modeling capabilities in this framework. ^ For analysis, this framework combines three complementary techniques, simulation, explicit state model checking and bounded model checking (BMC). Simulation is a straightforward and speedy method, but only covers some execution paths in a HLPN model. Explicit state model checking covers all the execution paths but suffers from the state explosion problem. BMC is a tradeoff as it provides a certain level of coverage while more efficient than explicit state model checking. The main contribution of this dissertation with regard to analysis is adapting BMC to analyze HLPN models and integrating the three complementary analysis techniques in a software tool to support the formal analysis capabilities in this framework. ^ The SAMTools developed for this framework in this dissertation integrates three tools: PIPE+ for HLPNs behavioral modeling and simulation, SAMAT for hierarchical structural modeling and property specification, and PIPE+Verifier for behavioral verification.^
Resumo:
Shipboard power systems have different characteristics than the utility power systems. In the Shipboard power system it is crucial that the systems and equipment work at their peak performance levels. One of the most demanding aspects for simulations of the Shipboard Power Systems is to connect the device under test to a real-time simulated dynamic equivalent and in an environment with actual hardware in the Loop (HIL). The real time simulations can be achieved by using multi-distributed modeling concept, in which the global system model is distributed over several processors through a communication link. The advantage of this approach is that it permits the gradual change from pure simulation to actual application. In order to perform system studies in such an environment physical phase variable models of different components of the shipboard power system were developed using operational parameters obtained from finite element (FE) analysis. These models were developed for two types of studies low and high frequency studies. Low frequency studies are used to examine the shipboard power systems behavior under load switching, and faults. High-frequency studies were used to predict abnormal conditions due to overvoltage, and components harmonic behavior. Different experiments were conducted to validate the developed models. The Simulation and experiment results show excellent agreement. The shipboard power systems components behavior under internal faults was investigated using FE analysis. This developed technique is very curial in the Shipboard power systems faults detection due to the lack of comprehensive fault test databases. A wavelet based methodology for feature extraction of the shipboard power systems current signals was developed for harmonic and fault diagnosis studies. This modeling methodology can be utilized to evaluate and predicate the NPS components future behavior in the design stage which will reduce the development cycles, cut overall cost, prevent failures, and test each subsystem exhaustively before integrating it into the system.
Resumo:
Background: It is well documented that children with Specific Language Impairment (SLI) experience significant grammatical deficits. While much of the focus in the past has been on their morphosyntactic difficulties, less is known about their acquisition of complex syntactic structures such as relative clauses. The role of memory in language performance has also become increasingly prominent in the literature. Aims: This study aims to investigate the control of an important complex syntactic structure, the relative clause, by school age children with SLI in Ireland, using a newly devised sentence recall task. It also aims to explore the role of verbal and short-termworking memory in the performance of children with SLI on the sentence recall task, using a standardized battery of tests based on Baddeley’s model of working memory. Methods and Procedures: Thirty two children with SLI, thirty two age matched typically developing children (AM-TD) between the ages of 6 and 7,11 years and twenty younger typically developing (YTD) children between 4,7 and 5 years, completed the task. The sentence recall (SR) task included 52 complex sentences and 17 fillers. It included relative clauses that are used in natural discourse and that reflect a developmental hierarchy. The relative clauses were also controlled for length and varied in syntactic complexity, representing the full range of syntactic roles. There were seven different relative clause types attached to either the predicate nominal of a copular clause (Pn), or to the direct object of a transitive clause (Do). Responses were recorded, transcribed and entered into a database for analysis. TheWorkingMemory Test Battery for children (WMTB-C—Pickering & Gathercole, 2001) was administered in order to explore the role of short-term memory and working memory on the children’s performance on the SR task. Outcomes and Results: The children with SLI showed significantly greater difficulty than the AM-TD group and the YTD group. With the exception of the genitive subject clauses, the children with SLI scored significantly higher on all sentences containing a Pn main clause than those containing a transitive main clause. Analysis of error types revealed the frequent production of a different type of relative clause than that presented in the task—with a strong word order preference in the NVN direction indicated for the children with SLI. The SR performance for the children with SLI was most highly correlated with expressive language skills and digit recall. Conclusions and Implications: Children with SLI have significantly greater difficulty with relative clauses than YTD children who are on average two years younger—relative clauses are a delay within a delay. Unlike the YTD children they show a tendency to simplify relative clauses in the noun verb noun (NVN) direction. They show a developmental hierarchy in their production of relative clause constructions and are highly influenced by the frequency distribution of the relative clauses in the ambient language.
Resumo:
Petri Nets are a formal, graphical and executable modeling technique for the specification and analysis of concurrent and distributed systems and have been widely applied in computer science and many other engineering disciplines. Low level Petri nets are simple and useful for modeling control flows but not powerful enough to define data and system functionality. High level Petri nets (HLPNs) have been developed to support data and functionality definitions, such as using complex structured data as tokens and algebraic expressions as transition formulas. Compared to low level Petri nets, HLPNs result in compact system models that are easier to be understood. Therefore, HLPNs are more useful in modeling complex systems. There are two issues in using HLPNs - modeling and analysis. Modeling concerns the abstracting and representing the systems under consideration using HLPNs, and analysis deals with effective ways study the behaviors and properties of the resulting HLPN models. In this dissertation, several modeling and analysis techniques for HLPNs are studied, which are integrated into a framework that is supported by a tool. For modeling, this framework integrates two formal languages: a type of HLPNs called Predicate Transition Net (PrT Net) is used to model a system's behavior and a first-order linear time temporal logic (FOLTL) to specify the system's properties. The main contribution of this dissertation with regard to modeling is to develop a software tool to support the formal modeling capabilities in this framework. For analysis, this framework combines three complementary techniques, simulation, explicit state model checking and bounded model checking (BMC). Simulation is a straightforward and speedy method, but only covers some execution paths in a HLPN model. Explicit state model checking covers all the execution paths but suffers from the state explosion problem. BMC is a tradeoff as it provides a certain level of coverage while more efficient than explicit state model checking. The main contribution of this dissertation with regard to analysis is adapting BMC to analyze HLPN models and integrating the three complementary analysis techniques in a software tool to support the formal analysis capabilities in this framework. The SAMTools developed for this framework in this dissertation integrates three tools: PIPE+ for HLPNs behavioral modeling and simulation, SAMAT for hierarchical structural modeling and property specification, and PIPE+Verifier for behavioral verification.
Resumo:
Edge-labeled graphs have proliferated rapidly over the last decade due to the increased popularity of social networks and the Semantic Web. In social networks, relationships between people are represented by edges and each edge is labeled with a semantic annotation. Hence, a huge single graph can express many different relationships between entities. The Semantic Web represents each single fragment of knowledge as a triple (subject, predicate, object), which is conceptually identical to an edge from subject to object labeled with predicates. A set of triples constitutes an edge-labeled graph on which knowledge inference is performed. Subgraph matching has been extensively used as a query language for patterns in the context of edge-labeled graphs. For example, in social networks, users can specify a subgraph matching query to find all people that have certain neighborhood relationships. Heavily used fragments of the SPARQL query language for the Semantic Web and graph queries of other graph DBMS can also be viewed as subgraph matching over large graphs. Though subgraph matching has been extensively studied as a query paradigm in the Semantic Web and in social networks, a user can get a large number of answers in response to a query. These answers can be shown to the user in accordance with an importance ranking. In this thesis proposal, we present four different scoring models along with scalable algorithms to find the top-k answers via a suite of intelligent pruning techniques. The suggested models consist of a practically important subset of the SPARQL query language augmented with some additional useful features. The first model called Substitution Importance Query (SIQ) identifies the top-k answers whose scores are calculated from matched vertices' properties in each answer in accordance with a user-specified notion of importance. The second model called Vertex Importance Query (VIQ) identifies important vertices in accordance with a user-defined scoring method that builds on top of various subgraphs articulated by the user. Approximate Importance Query (AIQ), our third model, allows partial and inexact matchings and returns top-k of them with a user-specified approximation terms and scoring functions. In the fourth model called Probabilistic Importance Query (PIQ), a query consists of several sub-blocks: one mandatory block that must be mapped and other blocks that can be opportunistically mapped. The probability is calculated from various aspects of answers such as the number of mapped blocks, vertices' properties in each block and so on and the most top-k probable answers are returned. An important distinguishing feature of our work is that we allow the user a huge amount of freedom in specifying: (i) what pattern and approximation he considers important, (ii) how to score answers - irrespective of whether they are vertices or substitution, and (iii) how to combine and aggregate scores generated by multiple patterns and/or multiple substitutions. Because so much power is given to the user, indexing is more challenging than in situations where additional restrictions are imposed on the queries the user can ask. The proposed algorithms for the first model can also be used for answering SPARQL queries with ORDER BY and LIMIT, and the method for the second model also works for SPARQL queries with GROUP BY, ORDER BY and LIMIT. We test our algorithms on multiple real-world graph databases, showing that our algorithms are far more efficient than popular triple stores.