984 resultados para Power delay profiles


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the first multi vector energy analysis for the interconnected energy systems of Great Britain (GB) and Ireland. Both systems share a common high penetration of wind power, but significantly different security of supply outlooks. Ireland is heavily dependent on gas imports from GB, giving significance to the interconnected aspect of the methodology in addition to the gas and power interactions analysed. A fully realistic unit commitment and economic dispatch model coupled to an energy flow model of the gas supply network is developed. Extreme weather events driving increased domestic gas demand and low wind power output were utilised to increase gas supply network stress. Decreased wind profiles had a larger impact on system security than high domestic gas demand. However, the GB energy system was resilient during high demand periods but gas network stress limited the ramping capability of localised generating units. Additionally, gas system entry node congestion in the Irish system was shown to deliver a 40% increase in short run costs for generators. Gas storage was shown to reduce the impact of high demand driven congestion delivering a reduction in total generation costs of 14% in the period studied and reducing electricity imports from GB, significantly contributing to security of supply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation presents the design of three high-performance successive-approximation-register (SAR) analog-to-digital converters (ADCs) using distinct digital background calibration techniques under the framework of a generalized code-domain linear equalizer. These digital calibration techniques effectively and efficiently remove the static mismatch errors in the analog-to-digital (A/D) conversion. They enable aggressive scaling of the capacitive digital-to-analog converter (DAC), which also serves as sampling capacitor, to the kT/C limit. As a result, outstanding conversion linearity, high signal-to-noise ratio (SNR), high conversion speed, robustness, superb energy efficiency, and minimal chip-area are accomplished simultaneously. The first design is a 12-bit 22.5/45-MS/s SAR ADC in 0.13-μm CMOS process. It employs a perturbation-based calibration based on the superposition property of linear systems to digitally correct the capacitor mismatch error in the weighted DAC. With 3.0-mW power dissipation at a 1.2-V power supply and a 22.5-MS/s sample rate, it achieves a 71.1-dB signal-to-noise-plus-distortion ratio (SNDR), and a 94.6-dB spurious free dynamic range (SFDR). At Nyquist frequency, the conversion figure of merit (FoM) is 50.8 fJ/conversion step, the best FoM up to date (2010) for 12-bit ADCs. The SAR ADC core occupies 0.06 mm2, while the estimated area the calibration circuits is 0.03 mm2. The second proposed digital calibration technique is a bit-wise-correlation-based digital calibration. It utilizes the statistical independence of an injected pseudo-random signal and the input signal to correct the DAC mismatch in SAR ADCs. This idea is experimentally verified in a 12-bit 37-MS/s SAR ADC fabricated in 65-nm CMOS implemented by Pingli Huang. This prototype chip achieves a 70.23-dB peak SNDR and an 81.02-dB peak SFDR, while occupying 0.12-mm2 silicon area and dissipating 9.14 mW from a 1.2-V supply with the synthesized digital calibration circuits included. The third work is an 8-bit, 600-MS/s, 10-way time-interleaved SAR ADC array fabricated in 0.13-μm CMOS process. This work employs an adaptive digital equalization approach to calibrate both intra-channel nonlinearities and inter-channel mismatch errors. The prototype chip achieves 47.4-dB SNDR, 63.6-dB SFDR, less than 0.30-LSB differential nonlinearity (DNL), and less than 0.23-LSB integral nonlinearity (INL). The ADC array occupies an active area of 1.35 mm2 and dissipates 30.3 mW, including synthesized digital calibration circuits and an on-chip dual-loop delay-locked loop (DLL) for clock generation and synchronization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The general aim of this article is to analyse the political organisation of the territory in Portuguese America from the start of the building up of the Crown judiciary system from in the 16th to the 18th centuries and to look into the causes of its belatedness in comparison to what happened in Spanish America. The focus will however be on the comarcas through the reconstitution of the process leading to the setting up of these judiciary divisions. Four stages of this process will be identified and discussion will ensue over the social and political contexts in which these political and administrative novelties came to happen. It is claimed that the delay in the structuring of the judicial network in the States of Brazil and Maranhão stems from the fact that the Portuguese advance into the territories took place at a later stage. The comparisons between the two systems will also bring other differences to the fore, not least the greater rigidity of the Spanish model in contrast to the more experimental character of the Portuguese one, and the resilience found to exist in the donatarial system. It is also worth to point out that given solutions were the result of the will of central power as much as of local initiative, and it is suggested that the building up of the crown’s political apparatus (in which the judiciary network is included) brought about the connivance,albeit ephemeral, of social interests which are considered contradictory or irreconcilable by some authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade, success of social networks has significantly reshaped how people consume information. Recommendation of contents based on user profiles is well-received. However, as users become dominantly mobile, little is done to consider the impacts of the wireless environment, especially the capacity constraints and changing channel. In this dissertation, we investigate a centralized wireless content delivery system, aiming to optimize overall user experience given the capacity constraints of the wireless networks, by deciding what contents to deliver, when and how. We propose a scheduling framework that incorporates content-based reward and deliverability. Our approach utilizes the broadcast nature of wireless communication and social nature of content, by multicasting and precaching. Results indicate this novel joint optimization approach outperforms existing layered systems that separate recommendation and delivery, especially when the wireless network is operating at maximum capacity. Utilizing limited number of transmission modes, we significantly reduce the complexity of the optimization. We also introduce the design of a hybrid system to handle transmissions for both system recommended contents ('push') and active user requests ('pull'). Further, we extend the joint optimization framework to the wireless infrastructure with multiple base stations. The problem becomes much harder in that there are many more system configurations, including but not limited to power allocation and how resources are shared among the base stations ('out-of-band' in which base stations transmit with dedicated spectrum resources, thus no interference; and 'in-band' in which they share the spectrum and need to mitigate interference). We propose a scalable two-phase scheduling framework: 1) each base station obtains delivery decisions and resource allocation individually; 2) the system consolidates the decisions and allocations, reducing redundant transmissions. Additionally, if the social network applications could provide the predictions of how the social contents disseminate, the wireless networks could schedule the transmissions accordingly and significantly improve the dissemination performance by reducing the delivery delay. We propose a novel method utilizing: 1) hybrid systems to handle active disseminating requests; and 2) predictions of dissemination dynamics from the social network applications. This method could mitigate the performance degradation for content dissemination due to wireless delivery delay. Results indicate that our proposed system design is both efficient and easy to implement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies have reported changes in spontaneous brain rhythms that could be used asclinical biomarkers or in the evaluation of neuropsychological and drug treatments in longitudinal studies using magnetoencephalography (MEG). There is an increasing necessity to use these measures in early diagnosis and pathology progression; however, there is a lack of studies addressing how reliable they are. Here, we provide the first test-retest reliability estimate of MEG power in resting-state at sensor and source space. In this study, we recorded 3 sessions of resting-state MEG activity from 24 healthy subjects with an interval of a week between each session. Power values were estimated at sensor and source space with beamforming for classical frequency bands: delta (2–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), low beta (13–20 Hz), high beta (20–30 Hz), and gamma (30–45 Hz). Then, test-retest reliability was evaluated using the intraclass correlation coefficient (ICC). We also evaluated the relation between source power and the within-subject variability. In general, ICC of theta, alpha, and low beta power was fairly high (ICC > 0.6) while in delta and gamma power was lower. In source space, fronto-posterior alpha, frontal beta, and medial temporal theta showed the most reliable profiles. Signal-to-noise ratio could be partially responsible for reliability as low signal intensity resulted inhigh within-subject variability, but also the inherent nature of some brain rhythms in resting-state might be driving these reliability patterns. In conclusion, our results described the reliability of MEG power estimates in each frequency band, which could be considered in disease characterization or clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In energy harvesting communications, users transmit messages using energy harvested from nature. In such systems, transmission policies of the users need to be carefully designed according to the energy arrival profiles. When the energy management policies are optimized, the resulting performance of the system depends only on the energy arrival profiles. In this dissertation, we introduce and analyze the notion of energy cooperation in energy harvesting communications where users can share a portion of their harvested energy with the other users via wireless energy transfer. This energy cooperation enables us to control and optimize the energy arrivals at users to the extent possible. In the classical setting of cooperation, users help each other in the transmission of their data by exploiting the broadcast nature of wireless communications and the resulting overheard information. In contrast to the usual notion of cooperation, which is at the signal level, energy cooperation we introduce here is at the battery energy level. In a multi-user setting, energy may be abundant in one user in which case the loss incurred by transferring it to another user may be less than the gain it yields for the other user. It is this cooperation that we explore in this dissertation for several multi-user scenarios, where energy can be transferred from one user to another through a separate wireless energy transfer unit. We first consider the offline optimal energy management problem for several basic multi-user network structures with energy harvesting transmitters and one-way wireless energy transfer. In energy harvesting transmitters, energy arrivals in time impose energy causality constraints on the transmission policies of the users. In the presence of wireless energy transfer, energy causality constraints take a new form: energy can flow in time from the past to the future for each user, and from one user to the other at each time. This requires a careful joint management of energy flow in two separate dimensions, and different management policies are required depending on how users share the common wireless medium and interact over it. In this context, we analyze several basic multi-user energy harvesting network structures with wireless energy transfer. To capture the main trade-offs and insights that arise due to wireless energy transfer, we focus our attention on simple two- and three-user communication systems, such as the relay channel, multiple access channel and the two-way channel. Next, we focus on the delay minimization problem for networks. We consider a general network topology of energy harvesting and energy cooperating nodes. Each node harvests energy from nature and all nodes may share a portion of their harvested energies with neighboring nodes through energy cooperation. We consider the joint data routing and capacity assignment problem for this setting under fixed data and energy routing topologies. We determine the joint routing of energy and data in a general multi-user scenario with data and energy transfer. Next, we consider the cooperative energy harvesting diamond channel, where the source and two relays harvest energy from nature and the physical layer is modeled as a concatenation of a broadcast and a multiple access channel. Since the broadcast channel is degraded, one of the relays has the message of the other relay. Therefore, the multiple access channel is an extended multiple access channel with common data. We determine the optimum power and rate allocation policies of the users in order to maximize the end-to-end throughput of this system. Finally, we consider the two-user cooperative multiple access channel with energy harvesting users. The users cooperate at the physical layer (data cooperation) by establishing common messages through overheard signals and then cooperatively sending them. For this channel model, we investigate the effect of intermittent data arrivals to the users. We find the optimal offline transmit power and rate allocation policy that maximize the departure region. When the users can further cooperate at the battery level (energy cooperation), we find the jointly optimal offline transmit power and rate allocation policy together with the energy transfer policy that maximize the departure region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UNLABELLED: Competition-specific conditioning for tournament basketball games is challenging, as the demands of tournament formats are not well characterized. PURPOSE: To compare the physical, physiological, and tactical demands of seasonal and tournament basketball competition and determine the pattern of changes within an international tournament. METHODS: Eight elite junior male basketball players (age 17.8 ± 0.2 y, height 1.93 ± 0.07 m, mass 85 ± 3 kg; mean ± SD) were monitored in 6 seasonal games played over 4 mo in an Australian second-division national league and in 7 games of an international under-18 tournament played over 8 days. Movement patterns and tactical elements were coded from video and heart rates recorded by telemetry. RESULTS: The frequency of running, sprinting, and shuffling movements in seasonal games was higher than in tournament games by 8-15% (99% confidence limits ± ~8%). Within the tournament, jogging and low- to medium-intensity shuffling decreased by 15-20% (± ~14%) over the 7 games, while running, sprinting, and high-intensity shuffling increased 11-81% (± ~25%). There were unclear differences in mean and peak heart rates. The total number of possessions was higher in seasonal than in tournament games by 8% (± 10%). CONCLUSIONS: Coaches should consider a stronger emphasis on strength and power training in their conditioning programs to account for the higher activity of seasonal games. For tournament competition, strategies that build a sufficient aerobic capacity and neuromuscular resilience to maintain high-intensity movements need to be employed. A focus on half-court tactics accounts for the lower number of possessions in tournaments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Training at the load that maximizes peak mechanical power (Pmax) is considered superior for the development of power. We aimed to identify the Pmax load ('optimal load') in the jump squat and to quantify small, moderate, large, and very large substantial differences in power output across a spectrum of loads to identify loads that are substantially different to the optimal, and lastly, to investigate the nature of power production (load-force-velocity profiles). Professional Australian Rules Football (ARF; n = 16) and highly trained Rugby Union (RU; n = 20) players (subdivided into stronger [SP] vs. weaker [WP] players) performed jump squats across incremental loads (0-60 kg). Substantial differences in peak power (W·kg(-1)) were quantified as 0.2-2.0 of the log transformed between-athlete SD at each load, backtransformed and expressed as a percent with 90% confidence limits (CL). A 0-kg jump squat maximized peak power (ARF: 57.7 ± 10.8 W·kg(-1); RU: 61.4 ± 8.5 W·kg(-1); SP: 64.4 ± 7.5 W·kg(-1); WP: 54.8 ± 9.5 W·kg(-1)). The range for small to very large substantial differences in power output was 4.5-55.9% (CL: ×/÷1.36) and 2.8-32.4% (CL: ×/÷1.31) in ARF and RU players, whereas in SP and WP, it was 3.7-43.1% (CL: ×/÷1.32) and 4.3-51.7% (CL: ×/÷1.36). Power declined per 10-kg increment in load, 14.1% (CL: ±1.6) and 10.5% (CL: ±1.5) in ARF and RU players and 12.8% (CL: ±1.9) and 11.3% (CL: ±1.7) in SP and WP. The use of a 0-kg load is superior for the development of jump squat maximal power, with moderate to very large declines in power output observed at 10- to 60-kg loads. Yet, performance of heavier load jump squats that are substantially different to the optimal load are important in the development of sport-specific force-velocity qualities and should not be excluded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the surface profiles of a strip after rigid bodies with serrated (saw-teeth) surfaces indent the strip and are subsequently removed. Plane-strain conditions are assumed. This has application in roughness transfer of final metal forming process. The effects of the semi-angle of the teeth, the depth of indentation and the friction on the contact surface on the profile are considered.