930 resultados para Potassium phosphate
Resumo:
Most patients with chronic kidney disease experience abnormalities in serum calcium, phosphorus, parathyroid hormone, and vitamin D metabolism. These can lead to vascular calcification (VC), which has been associated with increased risk for cardiovascular disease and mortality. Although hyperphosphatemia is believed to be a risk factor for mortality and VC, no randomized trial was ever designed to demonstrate that lowering phosphate reduces mortality. Nonetheless, binders have been used extensively, and the preponderance of evidence shows that sevelamer slows the development of VC whereas calcium salts do not. Four studies have demonstrated a slower progression of VC with sevelamer than with calcium-containing binders, although a fifth study showed nonsuperiority. Conversely, the results on mortality with sevelamer have been variable, and data on calcium-based binders are nonexistent. Improved survival with sevelamer was demonstrated in a small randomized clinical trial, whereas a larger randomized trial failed to show a benefit. In addition, preclinical models of renal failure and preliminary clinical data on hemodialysis patients suggest a potential benefit for bone with sevelamer. Meanwhile, several randomized and observational studies suggested no improvement in bone density and fracture rate, and a few noted an increase in total and cardiovascular mortality in the general population given calcium supplements. Although additional studies are needed, there are at least indications that sevelamer may improve vascular and bone health and, perhaps, mortality in hemodialysis patients, whereas data on calcium-based binders are lacking. Clin J Am Soc Nephrol 5: S31-S40, 2010. doi: 10.2215/CJN.05880809
Resumo:
Le taux de triacylglycerol (TAG) qui s`accumule dans le tissu adipeux depend de 2 mecanismes opposes : la lipogenese et la lipolyse. Nous avons montre anterieurement que le poids des lipides du tissu adipeux de l`epididyme (EPI) de meme que leur taux augmentent chez les rats en croissance soumis a une diete hypoproteique hyperglucidique (HPHG) pendant 15 jours. La presente etude a eu pour but d`examiner les voies impliquees dans la lipogenese et la lipolyse qui regulent l`accumulation des lipides dans le tissu. On a evalue in vivo la synthese de novo des acides gras, qui s`est revelee similaire chez les rats soumis a la diete HPHG ou a une diete temoin; toutefois, chez les rats soumis a la diete HPHG, une diminution de l`activite de la lipoproteine lipase dans le tissus adipeux de l`EPI a ete observee, ce qui laisse croire a une diminution de la capture des acides gras des lipoproteines circulantes. La diete HPHG n`a eu aucun effet sur la synthese du glycerol-3-phosphate (G3P) par la glycolyse ou la glyceroneogenese. L`activite de la glycerokinase, c.-a-d. la phosphorylation du glycerol issu de l`hydrolyse du TAG endogene pour former le GP3, n`a pas ete modifiee non plus par la diete HPHG. A l`oppose, les adipocytes des rats HPHG stimules par la norepinephrine ont eu une plus faible reponse lipolytique, meme si le taux lipolytique basal des adipocytes a ete similaire chez les 2 groupes. Ainsi, les resultats donnent a penser que la diminution de l`activite lipolytique stimulee par la norepinephrine joue un role essentiel dans l`augmentation du TAG observee dans le tissu adipeux de l`EPI des animaux HPHG, probablement en perturbant le processus d`activation de la lipolyse.
Resumo:
In vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats. Two insulin-sensitive processes, in vivo fatty acid synthesis and in vivo glucose uptake (which was used to evaluate G3P generation via glycolysis) were increased in BAT from rats fed the cafeteria diet. Direct glycerol phosphorylation, evaluated by glycerokinase (GyK) activity and incorporation of [U-(14)C]glycerol into triacylglycerol (TAG)-glycerol, was also markedly increased in BAT from these rats. In contrast, the cafeteria diet induced a marked reduction of BAT glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase-C activity and incorporation of [1-(14)C]pyruvate into TAG-glycerol. BAT denervation resulted in an approximately 50% reduction of GyK activity, but did not significantly affect BAT in vivo fatty acid synthesis, in vivo glucose uptake, or glyceroneogenesis. The data suggest that the supply of G3P for BAT TAG synthesis can be adjusted independently from the sympathetic nervous system and solely by reciprocal changes in the generation of G3P via glycolysis and via glyceroneogenesis, with no participation of direct phosphorylation of glycerol by GyK.
Resumo:
The Golgi method has been used for over a century to describe the general morphology of neurons in the nervous system of different species. The ""single-section"" Golgi method of Gabbott and Somogyi (1984) and the modifications made by Izzo et al. (1987) are able to produce consistent results. Here, we describe procedures to show cortical and subcortical neurons of human brains immersed in formalin for months or even years. The tissue was sliced with a vibratome, post-fixed in a combination of paraformaldehyde and picric acid in phosphate buffer, followed by osmium tetroxide and potassium dicromate, ""sandwiched"" between cover slips, and immersed in silver nitrate. The whole procedure takes between 5 and 11 days to achieve good results. The Golgi method has its characteristic pitfalls but, with this procedure, neurons and glia appear well-impregnated, allowing qualitative and quantitative studies under light microscopy. This contribution adds to the basic techniques for the study of human nervous tissue with the same advantages described for the ""single-section"" Golgi method in other species; it is easy and fast, requires minimal equipment, and provides consistent results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this study, we have addressed the role of H2S in modulating neutrophil migration in either innate (LPS-challenged naive mice) or adaptive (methylated BSA (mBSA)-challenged immunized mice) immune responses. Treatment of mice with H S synthesis inhibitors, DL-propargylglycine (PAG) or beta-cyanoalanine, reduced neutrophil migration induced by LPS or methylated BSA (mBSA) into the peritoneal cavity and by mBSA into the femur/tibial joint of immunized mice. This effect was associated with decreased leukocyte rolling, adhesion, and P-selectin and ICAM-1 expression on endothelium. Predictably, treatment of animals with the H2S donors, NaHS or Lawesson`s reagent, enhanced these parameters. Moreover, the NaHS enhancement of neutrophil migration was not observed in ICAM-1-deficient mice. Neither PAG nor NaHS treatment changed LPS-induced CD18 expression on neutrophils, nor did the LPS- and mBSA-induced release of neutrophil chemoattractant mediators TNF-alpha, keratinocyte-derived chemokine, and LTB4. Furthermore, in vitro MIP-2-induced neutrophil chemotaxis was inhibited by PAG and enhanced by NaHS treatments. Accordingly, MIP-2-induced CXCR2 internalization was enhanced by PAG and inhibited by NaHS treatments. Moreover, NaHS prevented MIP-2-induced CXCR2 desensitization. The PAG and NaHS effects correlated, respectively, with the enhancement and inhibition of MIP-2-induced G protein-coupled receptor kinase 2 expression. The effects of NaHS on neutrophil migration both in vivo and in vitro, together with CXCR2 internalization and G protein-coupled receptor kinase 2 expression were prevented by the ATP-sensitive potassium (K-ATP(+)) channel blocker, glybenclamide. Conversely, diazoxide, a K-ATP(+) channel opener, increased neutrophil migration in vivo. Together, our data suggest that during the inflammatory response, H`S augments neutrophil adhesion and locomotion, by a mechanism dependent on K-ATP(+) channels.
Resumo:
Endothelial dysfunction has been linked to a decrease in nitric oxide (NO) bioavailability and attenuated endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation. The small (SK(Ca)) and intermediate (IK(Ca)) calcium-activated potassium channels play a key role in endothelium-dependent relaxation. Because the repressor element 1-silencing transcription factor (REST) negatively regulates IK(Ca) expression, we hypothesized that augmented REST and decreased IK(Ca) expression contributes to impaired endothelium-dependent vasodilation associated with hypertension. Acetylcholine (ACh) responses were slightly decreased in small mesenteric arteries from male stroke-prone spontaneously hypertensive rats (SHRSPs) versus arteries from Wistar Kyoto (WKY) rats. Incubation with N-nitro-L-arginine methyl ester (L-NAME; 100 mu mol/L) and indomethacin (100 mu mol/L) greatly impaired ACh responses in vessels from SHRSP. lberiotoxin (0.1 mu mol/L), which is a selective inhibitor of large-conductance K(Ca) (BK(Ca)) channels, did not modify EDHF-mediated vasodilation in SHRSP or WKY. UCL-1684 (0.1 mu mol/L.), which is a selective inhibitor of SKCa channels, almost abolished EDHF-mediated vasodilation in WKY and decreased relaxation in SHRSP. 1-((2-chlorophenyl)diphenylmethyl)-1H-pyrazole (TRAM-34; 10 mu mol/L) and charybdotoxin (0.1 mu mol/L), which are both IKCa inhibitors, produced a small decrease of EDHF relaxation in WKY but completely abrogated EDHF vasodilation in SHRSP. EDHF-mediated relaxant responses were completely abolished in both groups by simultaneous treatment with UCL-1684 and TRAM-34 or charybdotoxin. Relaxation to SK(Ca)/IK(Ca) channels agonist NS-309 was decreased in SHRSP arteries. The expression of SK(Ca) was decreased, whereas IK(Ca) was increased in SHRSP mesenteric arteries. REST expression was reduced in arteries from SHRSP. Vessels incubated with TRAM-34 (10 mu mol/L) for 24h displayed reduced REST expression and demonstrated no differences in IK(Ca). In conclusion, IK(Ca) channel upregulation, via decreased REST, seems to compensate deficient activity of SK(Ca) channels in the vasculature of spontaneously hypertensive rats. (Translational Research 2009; 154:183-193)
Resumo:
The aim of this study was to evaluate the protective effect of hydrogen sulfide (H(2)S) on ethanol-induced gastric lesions in mice and the influence of ATP-sensitive potassium (K(ATP)) channels, capsaicin-sensitive sensory afferent neurons, and transient receptor potential vanilloid (TRPV) 1 receptors on such an effect. Saline and L-cysteine alone or with propargylglycine, sodium hydrogen sulfide (NaHS), or Lawesson`s reagent were administrated for testing purposes. For other experiments, mice were pretreated with glibenclamide, neurotoxic doses of capsaicin, or capsazepine. Afterward, mice received L-cysteine, NaHS, or Lawesson`s reagent. After 30 min, 50% ethanol was administrated by gavage. After 1 h, mice were sacrificed, and gastric damage was evaluated by macroscopic and microscopic analyses. L-Cysteine, NaHS, and Lawesson`s reagent treatment prevented ethanol-induced macroscopic and microscopic gastric damage in a dose-dependent manner. Administration of propargylglycine, an inhibitor of endogenous H(2)S synthesis, reversed gastric protection induced by L-cysteine. Glibenclamide reversed L-cysteine, NaHS, or Lawesson`s reagent gastroprotective effects against ethanol-induced macroscopic damage in a dose-dependent manner. Chemical ablation of sensory afferent neurons by capsaicin reversed gastroprotective effects of L-cysteine or H(2)S donors (NaHS or Lawesson`s reagent) in ethanol-induced macroscopic gastric damage. Likewise, in the presence of the TRPV1 antagonist capsazepine, the gastroprotective effects of L-cysteine, NaHS, or Lawesson`s reagent were also abolished. Our results suggest that H(2)S prevents ethanol-induced gastric damage. Although there are many mechanisms through which this effect can occur, our data support the hypothesis that the activation of K(ATP) channels and afferent neurons/TRPV1 receptors is of primary importance.
Resumo:
The Woronin body, a septal pore-associated organelle specific to filamentous ascomycetes, is crucial for preventing cytoplasmic bleeding after hyphal injury. In this study, we show that T1hex-1 transcript and a variant splicing T2hex-1 transcript are up-regulated at alkaline pH. We also show that both hex-1 transcripts are overexpressed in the preg(c), nuc-1(RIP), and pacC(ko) mutant strains of Neurospora crassa grown under conditions of phosphate shortage at alkaline pH, suggesting that hex-1 transcription may be coregulated by these genes. In addition, we present evidence that N. crassa PacC also has metabolic functions at acidic pH. (C) 2008 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.
Resumo:
The molecular mechanism that controls the response to phosphate shortage in Neurospora crassa involves four regulatory genes - nuc-2, preg, pgov, and nuc-1. Phosphate shortage is sensed by the nuc-2 gene, the product of which inhibits the functioning of the PREG-PGOV complex. This allows the translocation of the transcriptional factor NUC-1 into the nucleus, which activates the transcription of phosphate-repressible phosphatases. The nuc-2A mutant strain of N. crassa carries a loss-of-function mutation in the nuc-2 gene, which encodes an ankyrin-like repeat protein. In this study, we identified transcripts that are downregutated in the nuc-2A mutant strain. Functional grouping of these expressed sequence tags allowed the identification of genes that play essential roles in different cellular processes such as transport, transcriptional regulation, signal transduction, metabolism, protein synthesis, protein fate, and development. These results reveal novel aspects of the phosphorus-sensing network in N. crassa. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
A minimally invasive caries-removal technique preserves potentially repairable, caries-affected dentin. Mineral-releasing cements may promote remineralization of soft residual dentin. This study evaluated the in vivo remineralization capacity of resin-based calcium-phosphate cement (Ca-PO(4)) used for indirect pulp-capping. Permanent carious and sound teeth indicated for extraction were excavated and restored either with or without the Ca-PO(4) base (control), followed by adhesive restoration. Study teeth were extracted after 3 months, followed by sectioning and in vitro microhardness analysis of the cavity floor to 115-mu m depth. Caries-affected dentin that received acid conditioning prior to Ca-PO(4) basing showed significantly increased Knoop hardness near the cavity floor. The non-etched group presented results similar to those of the non-treated group. Acid etching prior to cement application increased microhardness of residual dentin near the interface after 3 months in situ.
Resumo:
Minimally invasive caries-removal procedures remove only caries-infected dentin and preserve caries-affected dentin that becomes remineralized. Dental cements containing calcium phosphate promote remineralization. This study evaluated the in vivo remineralization capacity of resin-based calcium-phosphate cement (Ca-P) used for indirect pulp-capping. Carious and sound teeth indicated for extraction were randomly restored with the Ca-P base or without base (control), followed by adhesive restoration. Study teeth were extracted after three months, followed by elemental analysis of the cavity floor. Mineral content of affected or sound dentin at the cavity floor was quantified by electron probe micro-analysis to 100-mu m depth. After three months, caries-affected dentin underneath the Ca-P base showed significantly increased calcium and phosphorus content to a depth of 30 mu m. Mineral content of treated caries-affected dentin was in the range of healthy dentin, revealing the capacity of Ca-P base to promote remineralization of caries-affected dentin.
Resumo:
Eag1 (K(v)10.1) is the founding member of an evolutionarily conserved superfamily of voltage-gated K+ channels. In rats and humans Eag1 is preferentially expressed in adult brain but its regional distribution has only been studied at mRNA level and only in the rat at high resolution. The main aim of the present study is to describe the distribution of Eag1 protein in adult rat brain in comparison to selected regions of the human adult brain. The distribution of Eag1 protein was assessed using alkaline-phosphatase based immunohistochemistry. Eag1 immunoreactivity was widespread, although selective, throughout rat brain, especially noticeable in the perinuclear space of cells and proximal regions of the extensions, both in rat and human brain. To relate the results to the relative abundance of Eag1 transcripts in different regions of rat brain a reverse-transcription coupled to quantitative polymerase chain reaction (real time PCR) was performed. This real time PCR analysis showed high Eag1 expression in the olfactory bulb, cerebral cortex, hippocampus, hypothalamus, and cerebellum. The results indicate that Eag1 protein expression greatly overlaps with mRNA distribution in rats and humans. The physiological relevance of potassium channels in the different regions expressing Eag1 protein is discussed. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
To evaluate several protocols for the application of ultrasound during removal of cast posts with varying core configurations cemented with zinc phosphate. Sixty maxillary canines were distributed into three groups (n = 20): group 1 - core with 5 mm diameter/height and post diameter of 1.3 mm; groups 2 and 3 - core with the same diameter as the post (1.3 mm) and heights of 5 mm and 3 mm, respectively. Posts/cores were cemented using a standard technique with zinc phosphate cement. Each group was divided into two subgroups according to the ultrasonic vibration mode: point vibration - ultrasonic vibration applied to the core surface for 5 s, on each face totalling 25 s; alternate vibration - intermittent application of ultrasonic vibration for 10 s to the labial and lingual surfaces, 10 s to the mesial and distal surfaces and 5 s to the incisal surface, totalling 25 s. The specimens were submitted to the tensile test using an Instron machine (1 mm min(-1)) and results were analysed by anova and t-test. The failure type was also analysed. Statistical analysis showed significant differences between groups relating to the core preparations (P < 0.05). The lowest mean values of traction force were obtained for group 3 (46.1 +/- 7.7 N), followed by group 2 (89.0 +/- 2.7 N) and group 1 (160.4 +/- 7.5 N). Regarding ultrasonic vibration, the lowest mean was observed with alternate vibration (81.1 +/- 10.1 N), which was significantly lower than the point vibration (115.9 +/- 9.5 N) (P < 0.05). Cohesive failure occurred in all cases. A reduction in core diameter/height and intermittent ultrasonic application improved the removal of cast posts cemented with zinc phosphate.
Resumo:
Purpose: This study evaluated the effect of pattern coating with spinel-based investment Rematitan Ultra (RU) on the castability and internal porosity of commercially pure (CP) titanium invested into phosphate-bonded investments. The apparent porosity of the investment was also measured. Materials and Methods: Square patterns (15 x 15 x 0.3 mm(3)) were either coated with RU, or not and invested into the phosphate-bonded investments: Rematitan Plus (RP), Rema Exakt (RE), Castorit Super C (CA), and RU (control group). The castings were made in an Ar-arc vacuum-pressure machine. The castability area (mm(2)) was measured by an image-analysis system (n = 10). For internal porosity, the casting (12 x 12 x 2 mm(3)) was studied by the X-ray method, and the projected porous area percentage was measured by an image-analysis system (n = 10). The apparent porosity of the investment (n = 10) was measured in accordance with the ASTM C373-88 standard. Results: Analysis of variance (One-way ANOVA) of castability was significant, and the Tukey test indicated that RU had the highest mean but the investing technique with coating increased the castability for all phosphate-bonded investments. The analysis of the internal porosity of the cast by the nonparametric test demonstrated that the RP, RE, and CA with coating and RP without coating did not differ from the control group (RU), while the CA and RE casts without coating were more porous. The one-way ANOVA of apparent porosity of the investment was significant, and the Tukey test showed that the means of RU (36.10%) and CA (37.22%) were higher than those of RP (25.91%) and RE (26.02%). Conclusion: Pattern coating with spinel-based material prior to phosphate-bonded investments can influence the castability and the internal porosity of CP Ti.
Large-conductance calcium-activated potassium channels in neonatal rat intracardiac ganglion neurons
Resumo:
The properties of single Ca2+-activated K+ (BK) channels in neonatal rat intracardiac neurons were investigated using the patch-clamp recording technique. In symmetrical 140 mM K+, the single-channel slope conductance was linear in the voltage range -60/+60 mV. and was 207+/-19 pS. Na+ ions were not measurably permeant through the open channel. Channel activity increased with the cytoplasmic free Ca2+ concentration ([Ca2+],) with a Hill plot giving a half-saturating [Ca2+] (K-0.5) of 1.35 muM and slope of congruent to3. The BK channel was inhibited reversibly by external tetraethylammonium (TEA) ions, charybdotoxin, and quinine and was resistant to block by 4-aminopyridine and apamin. Ionomycin (1-10 muM) increased BK channel activity in the cell-attached recording configuration. The resting activity was consistent with a [Ca2+](i)