912 resultados para Potassium lactate
Resumo:
The electrical conductivities of pernigraniline after ion implantation with potassium ions were studied experimentally. Pernigraniline films were irradiated with doses ranging from 1 x 10(13) to 1 x 10(17) K+ ions/cm2 at 40 keV. The electrical conductivit
Resumo:
A series of potassium-promoted CoMo/Al2O3 has been investigated by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and temperature-programmed reduction (TPR). CoMoO4 was found in the CoMo/Al2O3 catalyst by XRD and is destroyed by the presence of potassium. The reducibility of molybdenum is enhanced by potassium in the CoMoK/Al2O3 catalyst and is easier to reduce to Mo(IV) during sulfidation. In the oxidic state catalyst cobalt is increased on the surface by the addition of potassium. After sulfidation this phenomena disappeared, the distribution of cobalt remains at a constant level and is unaffected by the potassium content. The addition of potassium leads to a monotonical decrease of the molybdenum dispersion with the impregnating amount of potassium in the oxidic state catalyst but is more complicated after sulfidation. Potassium is well dispersed on the surface in both the oxidic and sulfided state. The activity in the water-gas shift reaction was correlated with the potassium content of CoMoK/Al2O3.
Resumo:
Ammonia synthesis over ruthenium catalysts supported on different carbon materials using Ba or K compounds as promoters has been investigated. Ba(NO3)(2), KOH, and KNO3 are used as the promoter or promoter precursor, and activated carbon (AC), activated carbon fiber (ACF). and carbon molecular sieve (CMS) are used as the support. The activity measurement for ammonia synthesis was carried out in a flow micro-reactor under mild conditions: 350-450 degreesC and 3.0 MPa. Results show that KOH promoter was more effective than KNO3. and that Ba(NO3)(2) was the most effective promoter among the three. The roles of promoters can be divided into the electronic modification of ruthenium, the neutralization of surface functional groups on the carbon support and the ruthenium precursor. The catalyst with AC as the support gave the highest ammonia concentration in the effluent among the supports used, while the catalyst with ACF as the support showed the highest turnover-frequency (TOF) value. It seems that the larger particles of Ru on the carbon supports are more active for ammonia synthesis in terms of TOF value. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Catalytic cracking of butene over potassium modified ZSM-5 catalysts was carried out in a fixed-bed microreactor. By increasing the K loading on the ZSM-5, butene conversion and ethene selectivity decreased almost linearly, while propene selectivity increased first, then passed through a maximum (about 50% selectivity) with the addition of ca. 0.7-1.0% K, and then decreased slowly with further increasing of the K loading. The reaction conditions were 620 degrees C, WHSV 3.5 h(-1), 0.1 MPa 1-butene partial pressure and 1 h of time on stream. Both by potassium modification of the ZSM-5 zeolite and by N(2) addition in the butene feed could enhance the selectivity towards propene effectively, but the catalyst stability did not show any improvement. On the other hand, addition of water to the butene feed could not only increase the butene conversion, but also improve the stability of the 0.7%K/ZSM-5 catalyst due to the effective removal of the coke formed, as demonstrated by the TPO spectra. XRD results indicated that the ZSM-5 structure of the 0.07% K/ZSM-5 catalyst was not destroyed even under this serious condition of adding water at 620 degrees C.
Resumo:
van Someren KA, Howatson G, Nunan D, Thatcher R, Shave R., Comparison of the Lactate Pro and Analox GM7 blood lactate analysers, Int J Sports Med. 2005 Oct;26(8):657-61. RAE2008
Resumo:
BACKGROUND: L-arginine infusion improves endothelial function in malaria but its safety profile has not been described in detail. We assessed clinical symptoms, hemodynamic status and biochemical parameters before and after a single L-arginine infusion in adults with moderately severe malaria. METHODOLOGY AND FINDINGS: In an ascending dose study, adjunctive intravenous L-arginine hydrochloride was infused over 30 minutes in doses of 3 g, 6 g and 12 g to three separate groups of 10 adults hospitalized with moderately severe Plasmodium falciparum malaria in addition to standard quinine therapy. Symptoms, vital signs and selected biochemical measurements were assessed before, during, and for 24 hours after infusion. No new or worsening symptoms developed apart from mild discomfort at the intravenous cannula site in two patients. There was a dose-response relationship between increasing mg/kg dose and the maximum decrease in systolic (rho = 0.463; Spearman's, p = 0.02) and diastolic blood pressure (r = 0.42; Pearson's, p = 0.02), and with the maximum increment in blood potassium (r = 0.70, p<0.001) and maximum decrement in bicarbonate concentrations (r = 0.53, p = 0.003) and pH (r = 0.48, p = 0.007). At the highest dose (12 g), changes in blood pressure and electrolytes were not clinically significant, with a mean maximum decrease in mean arterial blood pressure of 6 mmHg (range: 0-11; p<0.001), mean maximal increase in potassium of 0.5 mmol/L (range 0.2-0.7 mmol/L; p<0.001), and mean maximal decrease in bicarbonate of 3 mEq/L (range 1-7; p<0.01) without a significant change in pH. There was no significant dose-response relationship with blood phosphate, lactate, anion gap and glucose concentrations. All patients had an uncomplicated clinical recovery. CONCLUSIONS/SIGNIFICANCE: Infusion of up to 12 g of intravenous L-arginine hydrochloride over 30 minutes is well tolerated in adults with moderately severe malaria, with no clinically important changes in hemodynamic or biochemical status. Trials of adjunctive L-arginine can be extended to phase 2 studies in severe malaria. TRIAL REGISTRATION: ClinicalTrials.gov NCT00147368.
Resumo:
It is proposed that select oligomers of polymer d-lactic acid (PDLA) will form a stereocomplex with l-lactate in vivo, producing lactate deficiency in tumor cells. Those cancer cells that utilize transport of lactate to maintain electrical neutrality may cease to multiply or die because of lactate trapping, and those cancer cells that benefit from utilization of extracellular lactate may be impaired. Intracellular trapping of lactate produces a different physiology than inhibition of LDH because the cell loses the option of shuttling pyruvate to an alternative pathway to produce an anion. Conjugated with stains or fluorescent probes, PDLA oligomers may be an agent for the diagnosis of tissue lactate and possibly cell differentiation in biopsy specimens. Preliminary experimental evidence is presented confirming that PDLA in high concentrations is cytotoxic and that l-lactate forms a presumed stereocomplex with PDLA. Future work should be directed at isolation of biologically active oligomers of PDLA.