867 resultados para Portable architecture. Reassemblable structure. Design process
Resumo:
A RET network consists of a network of photo-active molecules called chromophores that can participate in inter-molecular energy transfer called resonance energy transfer (RET). RET networks are used in a variety of applications including cryptographic devices, storage systems, light harvesting complexes, biological sensors, and molecular rulers. In this dissertation, we focus on creating a RET device called closed-diffusive exciton valve (C-DEV) in which the input to output transfer function is controlled by an external energy source, similar to a semiconductor transistor like the MOSFET. Due to their biocompatibility, molecular devices like the C-DEVs can be used to introduce computing power in biological, organic, and aqueous environments such as living cells. Furthermore, the underlying physics in RET devices are stochastic in nature, making them suitable for stochastic computing in which true random distribution generation is critical.
In order to determine a valid configuration of chromophores for the C-DEV, we developed a systematic process based on user-guided design space pruning techniques and built-in simulation tools. We show that our C-DEV is 15x better than C-DEVs designed using ad hoc methods that rely on limited data from prior experiments. We also show ways in which the C-DEV can be improved further and how different varieties of C-DEVs can be combined to form more complex logic circuits. Moreover, the systematic design process can be used to search for valid chromophore network configurations for a variety of RET applications.
We also describe a feasibility study for a technique used to control the orientation of chromophores attached to DNA. Being able to control the orientation can expand the design space for RET networks because it provides another parameter to tune their collective behavior. While results showed limited control over orientation, the analysis required the development of a mathematical model that can be used to determine the distribution of dipoles in a given sample of chromophore constructs. The model can be used to evaluate the feasibility of other potential orientation control techniques.
Resumo:
It has become increasingly common for tasks traditionally carried out by engineers to be undertaken by technicians and technologist with access to sophisticated computers and software that can often perform complex calculations that were previously the responsibility of engineers. Not surprisingly, this development raises serious questions about the future role of engineers and the education needed to address these changes in technology as well as emerging priorities from societal to environmental challenges. In response to these challenges, a new design module was created for undergraduate engineering students to design and build temporary shelters for a wide variety of end users from refugees, to the homeless and children. Even though the module provided guidance on principles of design thinking and methods for observing users needs through field studies, the students found it difficult to respond to needs of specific end users but instead focused more on purely technical issues.
Resumo:
Scientific studies exploring the environmental and experiential elements that help boost human happiness have become a significant and expanding body of work. Some urban designers, architects and planners are looking to apply this knowledge through policy decisions and design, but there is a great deal of room for further study and exploration. This paper looks at definitions of happiness and happiness measurements used in research. The paper goes on to introduce six environmental factors identified in a literature review that have design implications relating to happiness: Nature, Light, Surprise, Access, Identity, and Sociality. Architectural precedents are examined and design strategies are proposed for each factor, which are then applied to a test case site and building in Baltimore, Maryland. It is anticipated that these factors and strategies will be useful to architects, urban designers and planners as they endeavor to design positive user experiences and set city shaping policy.
Resumo:
Since precise linear actuators of a compliant parallel manipulator suffer from their inability to tolerate the transverse motion/load in the multi-axis motion, actuation isolation should be considered in the compliant manipulator design to eliminate the transverse motion at the point of actuation. This paper presents an effective design method for constructing compliant parallel manipulators with actuation isolation, by adding the same number of actuation legs as the number of the DOF (degree of freedom) of the original mechanism. The method is demonstrated by two design case studies, one of which is quantitatively studied by analytical modelling. The modelling results confirm possible inherent issues of the proposed structure design method such as increased primary stiffness, introduced extra parasitic motions and cross-axis coupling motions.
Resumo:
Transdisciplinarity gained importance in the 1970s, with the initial signs of weakness of both multi- and interdisciplinary approaches. This weakness was felt due to the increased complexity in the social and technological landscapes. Generally, discussion over the transdisciplinary topic is centred in social and health sciences. Therefore, the major challenge in this research is to adapt design research to the emerging transdisciplinary discussion. Based on a comparative and critical review of several engineering and design models for the design process, we advocate the importance of collaboration and conceptualisation for these disciplines. Therefore, a transdisciplinary and conceptual cooperation between engineering and industrial design disciplines is considered as decisive to create breakthroughs. Furthermore, a synthesis is proposed, in order to foster the cooperation between engineering and industrial design.
Resumo:
This approach to sustainable design explores the possibility of creating an architectural design process which can iteratively produce optimised and sustainable design solutions. Driven by an evolution process based on genetic algorithms, the system allows the designer to “design the building design generator” rather than to “designs the building”. The design concept is abstracted into a digital design schema, which allows transfer of the human creative vision into the rational language of a computer. The schema is then elaborated into the use of genetic algorithms to evolve innovative, performative and sustainable design solutions. The prioritisation of the project’s constraints and the subsequent design solutions synthesised during design generation are expected to resolve most of the major conflicts in the evaluation and optimisation phases. Mosques are used as the example building typology to ground the research activity. The spatial organisations of various mosque typologies are graphically represented by adjacency constraints between spaces. Each configuration is represented by a planar graph which is then translated into a non-orthogonal dual graph and fed into the genetic algorithm system with fixed constraints and expected performance criteria set to govern evolution. The resultant Hierarchical Evolutionary Algorithmic Design System is developed by linking the evaluation process with environmental assessment tools to rank the candidate designs. The proposed system generates the concept, the seed, and the schema, and has environmental performance as one of the main criteria in driving optimisation.
Resumo:
This action research examines the enhancement of visual communication within the architectural design studio through physical model making. „It is through physical model making that designers explore their conceptual ideas and develop the creation and understanding of space,‟ (Salama & Wilkinson 2007:126). This research supplements Crowther‟s findings extending the understanding of visual dialogue to include physical models. „Architecture Design 8‟ is the final core design unit at QUT in the fourth year of the Bachelor of Design Architecture. At this stage it is essential that students have the ability to communicate their ideas in a comprehensive manner, relying on a combination of skill sets including drawing, physical model making, and computer modeling. Observations within this research indicates that students did not integrate the combination of the skill sets in the design process through the first half of the semester by focusing primarily on drawing and computer modeling. The challenge was to promote deeper learning through physical model making. This research addresses one of the primary reasons for the lack of physical model making, which was the limited assessment emphasis on the physical models. The unit was modified midway through the semester to better correlate the lecture theory with studio activities by incorporating a series of model making exercises conducted during the studio time. The outcome of each exercise was assessed. Tutors were surveyed regarding the model making activities and a focus group was conducted to obtain formal feedback from students. Students and tutors recognised the added value in communicating design ideas through physical forms and model making. The studio environment was invigorated by the enhanced learning outcomes of the students who participated in the model making exercises. The conclusions of this research will guide the structure of the upcoming iteration of the fourth year design unit.
Resumo:
There is a need for decision support tools that integrate energy simulation into early design in the context of Australian practice. Despite the proliferation of simulation programs in the last decade, there are no ready-to-use applications that cater specifically for the Australian climate and regulations. Furthermore, the majority of existing tools focus on achieving interaction with the design domain through model-based interoperability, and largely overlook the issue of process integration. This paper proposes an energy-oriented design environment that both accommodates the Australian context and provides interactive and iterative information exchanges that facilitate feedback between domains. It then presents the structure for DEEPA, an openly customisable system that couples parametric modelling and energy simulation software as a means of developing a decision support tool to allow designers to rapidly and flexibly assess the performance of early design alternatives. Finally, it discusses the benefits of developing a dynamic and concurrent performance evaluation process that parallels the characteristics and relationships of the design process.
Resumo:
The complex design process of airport terminal needs to support a wide range of changes in operational facilities for both usual and unusual/emergency events. Process model describes how activities within a process are connected and also states logical information flow of the various activities. The traditional design process overlooks the necessity of information flow from the process model to the actual building design, which needs to be considered as a integral part of building design. The current research introduced a generic method to obtain design related information from process model to incorporate with the design process. Appropriate integration of the process model prior to the design process uncovers the relationship exist between spaces and their relevant functions, which could be missed in the traditional design approach. The current paper examines the available Business Process Model (BPM) and generates modified Business Process Model(mBPM) of check-in facilities of Brisbane International airport. The information adopted from mBPM then transform into possible physical layout utilizing graph theory.
Resumo:
Flexible design concept is a relatively new trend in airport terminal design which is believed to facilitate the ever changing needs of a terminal. Current architectural design processes become more complex every day because of the introduction of new building technologies where the concept of flexible airport terminal would apparently make the design process even more complex. Previous studies have demonstrated that ever growing aviation industry requires airport terminals to be planned, designed and constructed in such a way that should allow flexibility in design process. In order to adopt the philosophy of ‘design for flexibility’ architects need to address a wide range of differing needs. An appropriate integration of the process models, prior to the airport terminal design process, is expected to uncover the relationships that exist between spatial layout and their corresponding functions. The current paper seeks to develop a way of sharing space adjacency related information obtained from the Business Process Models (BPM) to assist in defining flexible airport terminal layouts. Critical design parameters are briefly investigated at this stage of research whilst reviewing the available design alternatives and an evaluation framework is proposed in the current paper. Information obtained from various design layouts should assist in identifying and defining flexible design matrices allowing architects to interpret and to apply those throughout the lifecycle of the terminal building.
Resumo:
Architects regularly employ design as a problem-solving tool in the built environment. Within the design process, architects apply design thinking to reframe problems as opportunities, take advantage of contradictory information to develop new solutions, and differentiate outcomes based on context. This research aims to investigate how design can be better positioned to develop greater differentiated value to an architect’s current service offering, and how design as a strategy could be applied as a driver of business innovation within the Australian architecture industry. The research will explore literature relating to the future of architecture, the application of design thinking, and the benefits of strategic design. The future intent of the research is to develop strategies that improve the value offering of architects, and develop design led solutions that could be applied successfully to the business of architecture.
Resumo:
The traditional planning process in the UK and elsewhere takes too long to develop, are demanding on resources that are scarce and most times tend to be unrelated to the needs and demands of society. It segregates the plan making from the decision making process with the consultants planning, the politicians deciding and the community receiving without being integrated into the planning and decision making process. The Scottish Planning system is undergoing radical changes as evidenced by the publication of the Planning Advice Note, PAN by the Scottish Executive in July 2006 with the aim of enabling Community Engagement that allow for openness and accountability in the decision making process. The Public Engagement is a process that is driven by the physical, social and economic systems research aimed at improving the process at the level of community through problem solving and of the city region through strategic planning. There are several methods available to engage the community in large scale projects. The two well known ones are the Enquiry be Design and the Charrette approaches used in the UK and US respectively. This paper is an independent and rigorous analysis of the Charrette process as observed in the proposed Tornagrain Settlement in the Highlands area of Scotland. It attempts to gauge and analyse the attitudes, perceptions of the participants the Charrette as well as the mechanics and structure of the Charrette. The study analyzes the Charrette approach as a method future public engagement in and its effectiveness within the Scottish Planning System in view of PAN 2005. The analysis revealed that the Charrette as a method of engagement could be effective in changing attitudes of the community to the design process under certain conditions as discussed in the paper.
Resumo:
The contemporary dominance of visuality has turned our understanding of space into a mode of unidirectional experience that externalizes other sensual capacities of the body while perceiving the built environment. This affects not only architectural practice but also architectural education when an introduction to the concept of space is often challenging, especially for the students who have limited spatial and sensual training. Considering that an architectural work is not perceived as a series of retinal pictures but as a repeated multi-sensory experience, the problem definitions in the design studio need to be disengaged from the dominance of a ‘focused vision’ and be re-constructed in a holistic manner. A method to address this approach is to enable the students to refer to their own sensual experiences of the built environment as a part of their design processes. This paper focuses on a particular approach to the second year architectural design teaching which has been followed in the Department of Architecture at Izmir University of Economics for the last three years. The very first architectural project of the studio and the program, entitled ‘Sensing Spaces’, is conducted as a multi-staged design process including ‘sense games, analyses of organs and their interpretations into space’. The objectives of this four-week project are to explore the sense of space through the design of a three-dimensional assembly, to create an awareness of the significance of the senses in the design process and to experiment with re-interpreted forms of bodily parts. Hence, the students are encouraged to explore architectural space through their ‘tactile, olfactory, auditory, gustative and visual stimuli’. In this paper, based on a series of examples, architectural space is examined beyond its boundaries of structure, form and function, and spatial design is considered as an activity of re-constructing the built environment through the awareness of bodily senses.
Resumo:
2-D Discrete Cosine Transform (DCT) is widely used as the core of digital image and video compression. In this paper, we present a novel DCT architecture that allows aggressive voltage scaling by exploiting the fact that not all intermediate computations are equally important in a DCT system to obtain "good" image quality with Peak Signal to Noise Ratio(PSNR) > 30 dB. This observation has led us to propose a DCT architecture where the signal paths that are less contributive to PSNR improvement are designed to be longer than the paths that are more contributive to PSNR improvement. It should also be noted that robustness with respect to parameter variations and low power operation typically impose contradictory requirements in terms of architecture design. However, the proposed architecture lends itself to aggressive voltage scaling for low-power dissipation even under process parameter variations. Under a scaled supply voltage and/or variations in process parameters, any possible delay errors would only appear from the long paths that are less contributive towards PSNR improvement, providing large improvement in power dissipation with small PSNR degradation. Results show that even under large process variation and supply voltage scaling (0.8V), there is a gradual degradation of image quality with considerable power savings (62.8%) for the proposed architecture when compared to existing implementations in 70 nm process technology.
Resumo:
The artefact and techno-centricity of the research into the architecture process needs to be counterbalanced by other approaches. An increasing amount of information is collected and used in the process, resulting in challenges related to information and knowledge management, as this research evidences through interviews with practicing architects. However, emerging technologies are expected to resolve many of the traditional challenges, opening up new avenues for research. This research suggests that among them novel techniques addressing how architects interact with project information, especially that indirectly related to the artefacts, and tools which better address the social nature of work, notably communication between participants, become a higher priority. In the fields associated with the Human Computer Interaction generic solutions still frequently prevail, whereas it appears that specific alternative approaches would be particularly in demand for the dynamic and context dependent design process. This research identifies an opportunity for a process-centric and integrative approach for architectural practice and proposes an information management and communication software application, developed for the needs discovered in close collaboration with architects. Departing from the architects’ challenges, an information management software application, Mneme, was designed and developed until a working prototype. It proposes the use of visualizations as an interface to provide an overview of the process, facilitate project information retrieval and access, and visualize relationships between the pieces of information. Challenges with communication about visual content, such as images and 3D files, led to a development of a communication feature allowing discussions attached to any file format and searchable from a database. Based on the architects testing the prototype and literature recognizing the subjective side of usability, this thesis argues that visualizations, even 3D visualizations, present potential as an interface for information management in the architecture process. The architects confirmed that Mneme allowed them to have a better project overview, to easier locate heterogeneous content, and provided context for the project information. Communication feature in Mneme was seen to offer a lot of potential in design projects where diverse file formats are typically used. Through empirical understanding of the challenges in the architecture process, and through testing the resulting software proposal, this thesis suggests promising directions for future research into the architecture and design process.