969 resultados para Polymorphism, Genetic
Resumo:
INTRODUCTION According to genome wide association (GWA) studies as well as candidate gene approaches, Behçet's disease (BD) is associated with human leukocyte antigen (HLA)-A and HLA-B gene regions. The HLA-B51 has been consistently associated with the disease, but the role of other HLA class I molecules remains controversial. Recently, variants in non-HLA genes have also been associated with BD. The aims of this study were to further investigate the influence of the HLA region in BD and to explore the relationship with non-HLA genes recently described to be associated in other populations. METHODS This study included 304 BD patients and 313 ethnically matched controls. HLA-A and HLA-B low resolution typing was carried out by PCR-SSOP Luminex. Eleven tag single nucleotide polymorphisms (SNPs) located outside of the HLA-region, previously described associated with the disease in GWA studies and having a minor allele frequency in Caucasians greater than 0.15 were genotyped using TaqMan assays. Phenotypic and genotypic frequencies were estimated by direct counting and distributions were compared using the χ(2) test. RESULTS In addition to HLA-B*51, HLA-B*57 was found as a risk factor in BD, whereas, B*35 was found to be protective. Other HLA-A and B specificities were suggestive of association with the disease as risk (A*02 and A*24) or protective factors (A*03 and B*58). Regarding the non-HLA genes, the three SNPs located in IL23R and one of the SNPs in IL10 were found to be significantly associated with susceptibility to BD in our population. CONCLUSION Different HLA specificities are associated with Behçet's disease in addition to B*51. Other non-HLA genes, such as IL23R and IL-10, play a role in the susceptibility to the disease.
Resumo:
OBJECTIVE To study the molecular genetic and clinical features of cerebral cavernous malformations (CCM) in a cohort of Spanish patients. METHODS We analyzed the CCM1, CCM2, and CCM3 genes by MLPA and direct sequencing of exons and intronic boundaries in 94 familial forms and 41 sporadic cases of CCM patients of Spanish extraction. When available, RNA studies were performed seeking for alternative or cryptic splicing. RESULTS A total of 26 pathogenic mutations, 22 of which predict truncated proteins, were identified in 29 familial forms and in three sporadic cases. The repertoire includes six novel non-sense and frameshift mutations in CCM1 and CCM3. We also found four missense mutations, one of them located at the third NPXY motif of CCM1 and another one that leads to cryptic splicing of CCM1 exon 6. We found four genomic deletions with the loss of the whole CCM2 gene in one patient and a partial loss of CCM1and CCM2 genes in three other patients. Four families had mutations in CCM3. The results include a high frequency of intronic variants, although most of them localize out of consensus splicing sequences. The main symptoms associated to clinical debut consisted of cerebral haemorrhage, migraines and epileptic seizures. The rare co-occurrence of CCM with Noonan and Chiari syndromes and delayed menarche is reported. CONCLUSIONS Analysis of CCM genes by sequencing and MLPA has detected mutations in almost 35% of a Spanish cohort (36% of familial cases and 10% of sporadic patients). The results include 13 new mutations of CCM genes and the main clinical symptoms that deserves consideration in molecular diagnosis and genetic counselling of cerebral cavernous malformations.
Resumo:
Meniere's disease is an episodic vestibular syndrome associated with sensorineural hearing loss (SNHL) and tinnitus. Patients with MD have an elevated prevalence of several autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis and psoriasis), which suggests a shared autoimmune background. Functional variants of several genes involved in the NF-κB pathway, such as REL, TNFAIP3, NFKB1 and TNIP1, have been associated with two or more immune-mediated diseases and allelic variations in the TLR10 gene may influence bilateral affectation and clinical course in MD. We have genotyped 716 cases of MD and 1628 controls by using the ImmunoChip, a high-density genotyping array containing 186 autoimmune loci, to explore the association of immune system related-loci with sporadic MD. Although no single nucleotide polymorphism (SNP) reached a genome-wide significant association (p<10(-8)), we selected allelic variants in the NF-kB pathway for further analyses to evaluate the impact of these SNPs in the clinical outcome of MD in our cohort. None of the selected SNPs increased susceptibility for MD in patients with uni or bilateral SNHL. However, two potential regulatory variants in the NFKB1 gene (rs3774937 and rs4648011) were associated with a faster hearing loss progression in patients with unilateral SNHL. So, individuals with unilateral MD carrying the C allele in rs3774937 or G allele in rs4648011 had a shorter mean time to reach hearing stage 3 (>40 dB HL) (log-rank test, corrected p values were p = 0.009 for rs3774937 and p = 0.003 for rs4648011, respectively). No variants influenced hearing in bilateral MD. Our data support that the allelic variants rs3774937 and rs4648011 can modify hearing outcome in patients with MD and unilateral SNHL.
Resumo:
A total of 1,021 extended-spectrum-β-lactamase-producing Escherichia coli (ESBLEC) isolates obtained in 2006 during a Spanish national survey conducted in 44 hospitals were analyzed for the presence of the O25b:H4-B2-ST131 (sequence type 131) clonal group. Overall, 195 (19%) O25b-ST131 isolates were detected, with prevalence rates ranging from 0% to 52% per hospital. Molecular characterization of 130 representative O25b-ST131 isolates showed that 96 (74%) were positive for CTX-M-15, 15 (12%) for CTX-M-14, 9 (7%) for SHV-12, 6 (5%) for CTX-M-9, 5 (4%) for CTX-M-32, and 1 (0.7%) each for CTX-M-3 and the new ESBL enzyme CTX-M-103. The 130 O25b-ST131 isolates exhibited relatively high virulence scores (mean, 14.4 virulence genes). Although the virulence profiles of the O25b-ST131 isolates were fairly homogeneous, they could be classified into four main virotypes based on the presence or absence of four distinctive virulence genes: virotypes A (22%) (afa FM955459 positive, iroN negative, ibeA negative, sat positive or negative), B (31%) (afa FM955459 negative, iroN positive, ibeA negative, sat positive or negative), C (32%) (afa FM955459 negative, iroN negative, ibeA negative, sat positive), and D (13%) (afa FM955459 negative, iroN positive or negative, ibeA positive, sat positive or negative). The four virotypes were also identified in other countries, with virotype C being overrepresented internationally. Correspondingly, an analysis of XbaI macrorestriction profiles revealed four major clusters, which were largely virotype specific. Certain epidemiological and clinical features corresponded with the virotype. Statistically significant virotype-specific associations included, for virotype B, older age and a lower frequency of infection (versus colonization), for virotype C, a higher frequency of infection, and for virotype D, younger age and community-acquired infections. In isolates of the O25b:H4-B2-ST131 clonal group, these findings uniquely define four main virotypes, which are internationally distributed, correspond with pulsed-field gel electrophoresis (PFGE) profiles, and exhibit distinctive clinical-epidemiological associations.
Resumo:
In Arabidopsis thaliana, gene expression level polymorphisms (ELPs) between natural accessions that exhibit simple, single locus inheritance are promising quantitative trait locus (QTL) candidates to explain phenotypic variability. It is assumed that such ELPs overwhelmingly represent regulatory element polymorphisms. However, comprehensive genome-wide analyses linking expression level, regulatory sequence and gene structure variation are missing, preventing definite verification of this assumption. Here, we analyzed ELPs observed between the Eil-0 and Lc-0 accessions. Compared with non-variable controls, 5' regulatory sequence variation in the corresponding genes is indeed increased. However, approximately 42% of all the ELP genes also carry major transcription unit deletions in one parent as revealed by genome tiling arrays, representing a >4-fold enrichment over controls. Within the subset of ELPs with simple inheritance, this proportion is even higher and deletions are generally more severe. Similar results were obtained from analyses of the Bay-0 and Sha accessions, using alternative technical approaches. Collectively, our results suggest that drastic structural changes are a major cause for ELPs with simple inheritance, corroborating experimentally observed indel preponderance in cloned Arabidopsis QTL.
Resumo:
We have previously shown that env V4 from HIV-1 plasma RNA is highly heterogeneous within a single patient, due to indel-associated polymorphism. In this study, we have analyzed the variability of V4 in proviral DNA from unfractionated PBMC and sorted T and non-T cell populations within individual patients. Our data show that the degree of sequence variability and length polymorphism in V4 from HIV provirus is even higher than we previously reported in plasma. The data also show that the sequence of V4 depends largely on the experimental approach chosen. We could observe no clear trend for compartmentalization of V4 variants in specific cell types. Of interest is the fact that some variants that had been found to be predominant in plasma were not detected in any of the cell subsets analyzed. Consistently with our observations in plasma, V3 was found to be relatively conserved at both interpatient and intrapatient level. Our data show that V4 polymorphism involving insertions and deletions in addition to point mutations results in changes in the patterns of sequons in HIV-1 proviral DNA as well as in plasma RNA. These rearrangements may result in the coexistence, within the same individual, of a swarm of different V4 regions, each characterized by a different carbohydrate surface shield. Further studies are needed to investigate the mechanism responsible for the variability observed in V4 and its role in HIV pathogenesis.
Resumo:
Resistance of human immunodeficiency virus type 1 (HIV-1) to antiretroviral agents results from target gene mutation within the pol gene, which encodes the viral protease, reverse transcriptase (RT), and integrase. We speculated that mutations in genes other that the drug target could lead to drug resistance. For this purpose, the p1-p6(gag)-p6(pol) region of HIV-1, placed immediately upstream of pol, was analyzed. This region has the potential to alter Pol through frameshift regulation (p1), through improved packaging of viral enzymes (p6(Gag)), or by changes in activation of the viral protease (p6(Pol)). Duplication of the proline-rich p6(Gag) PTAP motif, necessary for late viral cycle activities, was identified in plasma virus from 47 of 222 (21.2%) patients treated with nucleoside analog RT inhibitor (NRTI) antiretroviral therapy but was identified very rarely from drug-naïve individuals. Molecular clones carrying a 3-amino-acid duplication, APPAPP (transframe duplication SPTSPT in p6(Pol)), displayed a delay in protein maturation; however, they packaged a 34% excess of RT and exhibited a marked competitive growth advantage in the presence of NRTIs. This phenotype is reminiscent of the inoculum effect described in bacteriology, where a larger input, or a greater infectivity of an organism with a wild-type antimicrobial target, leads to escape from drug pressure and a higher MIC in vitro. Though the mechanism by which the PTAP region participates in viral maturation is not known, duplication of this proline-rich motif could improve assembly and packaging at membrane locations, resulting in the observed phenotype of increased infectivity and drug resistance.
Resumo:
Testosterone abuse is conventionally assessed by the urinary testosterone/epitestosterone (T/E) ratio, levels above 4.0 being considered suspicious. A deletion polymorphism in the gene coding for UGT2B17 is strongly associated with reduced testosterone glucuronide (TG) levels in urine. Many of the individuals devoid of the gene would not reach a T/E ratio of 4.0 after testosterone intake. Future test programs will most likely shift from population based- to individual-based T/E cut-off ratios using Bayesian inference. A longitudinal analysis is dependent on an individual's true negative baseline T/E ratio. The aim was to investigate whether it is possible to increase the sensitivity and specificity of the T/E test by addition of UGT2B17 genotype information in a Bayesian framework. A single intramuscular dose of 500mg testosterone enanthate was given to 55 healthy male volunteers with either two, one or no allele (ins/ins, ins/del or del/del) of the UGT2B17 gene. Urinary excretion of TG and the T/E ratio was measured during 15 days. The Bayesian analysis was conducted to calculate the individual T/E cut-off ratio. When adding the genotype information, the program returned lower individual cut-off ratios in all del/del subjects increasing the sensitivity of the test considerably. It will be difficult, if not impossible, to discriminate between a true negative baseline T/E value and a false negative one without knowledge of the UGT2B17 genotype. UGT2B17 genotype information is crucial, both to decide which initial cut-off ratio to use for an individual, and for increasing the sensitivity of the Bayesian analysis.
Resumo:
BACKGROUND: Leprosy is characterized by a spectrum of clinical manifestations that depend on the type of immune response against the pathogen. Patients may undergo immunological changes known as "reactional states" (reversal reaction and erythema nodosum leprosum) that result in major clinical deterioration. The goal of the present study was to assess the effect of Toll-like receptor 2 (TLR2) polymorphisms on susceptibility to and clinical presentation of leprosy. METHODS: Three polymorphisms in TLR2 (597C-->T, 1350T-->C, and a microsatellite marker) were analyzed in 431 Ethiopian patients with leprosy and 187 control subjects. The polymorphism-associated risk of developing leprosy, lepromatous (vs. tuberculoid) leprosy, and leprosy reactions was assessed by multivariate logistic regression models. RESULTS: The microsatellite and the 597C-->T polymorphisms both influenced susceptibility to reversal reaction. Although the 597T allele had a protective effect (odds ratio [OR], 0.34 [95% confidence interval {CI}, 0.17-0.68]; P= .002 under the dominant model), homozygosity for the 280-bp allelic length of the microsatellite strongly increased the risk of reversal reaction (OR, 5.83 [95% CI, 1.98-17.15]; P= .001 under the recessive model). These associations were consistent among 3 different ethnic groups. CONCLUSIONS: These data suggest a significant role for TLR-2 in the occurrence of leprosy reversal reaction and provide new insights into the immunogenetics of the disease.
Resumo:
Five phosphatase-labelled oligonucleotide probes were evaluated in respect to their sensitivity, with the help of an optimized chemiluminescent protocol, for DNA-VNTR polymorphism determination. Their usefulness for the identification of biological traces is illustrated with casework examples.
Resumo:
Relentless progress in our knowledge of the nature and functional consequences of human genetic variation allows for a better understanding of the protracted battle between pathogens and their human hosts. Multiple polymorphisms have been identified that impact our response to infections or to anti-infective drugs, and some of them are already used in the clinic. However, to make personalized medicine a reality in infectious diseases, a sustained effort is needed not only in research but also in genomic education.
Resumo:
PURPOSE OF REVIEW: To review major findings on the T-cell receptor (TCR) repertoire diversity in response to several viral infections based on conventional methods of PCR, cloning and sequencing and to discuss their limitations in light of the recent methodological advances in deep sequencing.¦RECENT FINDINGS: Direct sequencing of TCR expressed by Ag-specific T cells isolated ex vivo has revealed that the TCR repertoire is not as restricted as previously estimated. Furthermore, analyses performed independently of the T-cell clonal hierarchy have brought to light an unexpected diversity. The choice of methods is critical to characterize the complexity of the repertoire. Recent advances in deep sequencing have uncovered the diversity of the TCR repertoire and shown that the size of the repertoire in naive and Ag-experienced memory T cells is three-fold to 15-fold larger than formerly estimated. Interestingly, the TCR complementary determining region 3 sequences are not randomly selected and a certain degree of shared TCR repertoire has been observed between different individuals.¦SUMMARY: Deep sequencing is a major methodological advance allowing more accurate molecular characterization of the TCR repertoire. In the near future, such technologies will further contribute to delineate the complexity of pathogen-specific T-cell response and help defining correlates of a protective immunity.
Resumo:
Using restriction fragment length polymorphism (RFLP) we have analyzed the segregation of alleles of the different vitellogenin genes of Xenopus laevis. The results demonstrate that the four genes whose expression is controlled by oestrogen, form two linkage groups. The genes A1, A2 and B1 are linked genetically whereas the fourth gene, the gene B2, segregates independently. The possible origin of this unexpected arrangement is discussed.
Resumo:
Genetic polymorphisms have currently been described in more than 200 systems affecting pharmacological responses (cytochromes P450, conjugation enzymes, transporters, receptors, effectors of response, protection mechanisms, determinants of immunity). Pharmacogenetic testing, i.e. the profiling of individual patients for such variations, is about to become largely available. Recent progress in the pharmacogenetics of tamoxifen, oral anticoagulants and anti-HIV agents is reviewed to discuss critically their potential impact on prescription and contribution/limits for improving rational and safe use of pharmaceuticals. Prospective controlled trials are required to evaluate large-scale pharmacogenetic testing in therapeutics. Ethical, social and psychological issues deserve particular attention.
Resumo:
A genetic polymorphism of cytochrome P450 2D6 has been described with the existence of poor (zero functional genes), extensive (one or two functional genes), and ultrarapid metabolizers (three or more functional genes). The authors measured the steady-state trough (R)- (i.e., the active enantiomer), (S)-, and (R,S)-methadone plasma levels in opiate-dependent patients receiving methadone maintenance treatment (MMT) and genotyped them for cytochrome P4502D6. The patients' medical records were reviewed to assess the outcome of the MMT with regard to the absence of illicit opiate consumption and to the absence of withdrawal complaints in ultrarapid and poor metabolizers. Of 256 patients included, 18 were found to be poor metabolizers, 228 to be extensive metabolizers, and 10 to be ultrarapid metabolizers. Significant differences were found between genotypes for (R)- (p = 0.024), (S)- (p = 0.033), and (R,S)-methadone (p = 0.026) concentrations to dose-to-weight ratios. For (R)-methadone, a significant difference was found between ultrarapid metabolizers and poor metabolizers (p = 0.009), with the median value in the former group being only 54% of the median value in the latter group. These results confirm the involvement of cytochrome P450 2D6 in methadone metabolism. Although the difference was nonsignificant (p = 0.103), 13 (72%) of the 18 poor metabolizers and only 4 (40%) of the 10 ultrarapid metabolizers were considered successful in their treatment. More studies are needed to examine the influence of the ultrarapid metabolizer status on the outcome of the MMT.