932 resultados para Poly(vinyl chloride)
Resumo:
Neste trabalho foi realizada a modificação química do poli(cloreto de vinila) (PVC) pela sua reação com azida de sódio, onde alguns dos seus átomos de cloro foram substituídos por azidas. Em seguida o grupo incorporado foi transformado em triazóis por uma reação de cicloadição 1,3 entre o polímero modificado e propiolato de etila, sendo a reação catalisada por iodeto de cobre. Essas reações foram conduzidas sob aquecimento convencional e empregando irradiação de micro-ondas. Inicialmente, a reação incorporou 20% de triazol no PVC, sendo avaliadas as condições reacionais ideais. Essas condições foram usadas para a formação de novos copolímeros com diferentes teores de triazóis incorporados. Os produtos obtidos foram usados para o suporte de paládio que é utilizado como catalisador na reação de Suzuki-Miyaura. Todos os copolímeros foram caracterizados por espectroscopia na região do infravermelho com transformada de Fourier (FTIR)
Resumo:
The peel test is commonly used to determine the strength of adhesive joints. In its simplest form, a thin flexible strip which has been bonded to a rigid surface is peeled from the substrate at a constant rate and the peeling force which is applied to the debonding surfaces by the tension in the tape is measured. Peeling can be carried out with the peel angle, i.e. the angle made by the peel force with the substrate surface, from any value above about 10° although peeling tests at 90 and 180° are most common. If the tape is sufficiently thin for its bending resistance to be negligibly small then as well as the debonding or decohesion energy associated with the adhesive in and around the point of separation, the relation between the peeling force and the peeling angle is influenced both by the mechanical properties of the tape and any pre-strain locked into the tape during its application to the substrate. The analytic solution for a tape material which can be idealised as elastic perfectly-plastic is well established. Here, we present a more general form of analysis, applicable in principle to any constitutive relation between tape load and tape extension. Non-linearity between load and extension is of increasing significance as the peel angle is decreased: the model presented is consistent with existing equations describing the failure of a lap joint between non-linear materials. The analysis also allows for energy losses within the adhesive layer which themselves may be influenced by both peel rate and peel angle. We have experimentally examined the application of this new analysis to several specific peeling cases including tapes of cellophane, poly-vinyl chloride and PTFE. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to develop soy protein fortified fish sticks from Tilapia. Two preliminary studies were conducted to select the best fish-soy protein-spice mixture combination with four treatments to develop breaded fish sticks. Developed products were organoleptically assessed using 30 untrained panellists with 7-point hedonic scale. The product developed with new combination was compared with market product. Sixty percent of Tilapia fish mince, 12% of Defatted Textured Soy protein (DTSP), 1.6% of salt and 26.4% of ice water (<5°C) and Spice mixture containing 3g of garlic, 2g of pepper 2g of onion and 1.6g of cinnamon were selected as the best formula to manufacture the product. There was no significant difference when compared with market samples in relation to the organoleptic attributes. Proximate composition of the product was 25.76% of crude protein, 2.38% of crude fat, 60.35% of moisture and2.75% of ash. Products were packaged in Poly Vinyl Chloride clear package (12 gauge) and were stored at -1°C and changes in moisture content, peroxide value, pH value and microbiological parameters were assessed during five weeks of storage. Organoleptic acceptability was not changed significantly in all parameters tested (p>0.05). Total aerobic count and yeast and mould count were in acceptable ranges in frozen storage for 5 weeks. Data were analyzed using AN OVA and Friedman non-parametric test.
Resumo:
In this paper, a poly(vinyl chloride) (PVC) membrane electrode is prepared for gemfibrozil, 2, 2-dimethyl-5(2,5-xylyloxy) valeric acid, based on its ion pair complexes with hexadecyltrioctyl ammonium iodide (HTOA). The membrane composition of the electrode was optimized by using the sequential level elimination method for orthogonal experimental design. The electrode has a Nernstian response range from 2.5 X 10(-5) to 0.1 mol/l with an average slope of 55.3 mV/decade. The limit of detection is 7.1 X 10(-6) mol/l. The electrode responses were not affected by pH in the range 10.0-12.3. A Na2B4O7-Na2CO3 buffer of pH = 11.0 was selected as the background electrolyte solution for potentiometric measurements. The electrode was used for determining gemfibrozil in pharmaceutical preparations with satisfactory results.
Resumo:
A new process of graft copolymerization of poly(vinyl chloride) (PVC) and polyethylene (PE) with other monomers was developed. The grafted chlorinated poly(vinyl chloride) (CPVC) and chlorinated polyethylene (CPE) were synthesized by in situ chlorinating graft copolymerization (ISCGC) and were characterized. Convincing evidence for grafting and the structure of graft copolymers was obtained using FT-IR, H-1-NMR, gel permeation chromatography (GPC), and the vulcanized curves. Their mechanical properties were also measured. The results show that the products have different molecular structure from those prepared by other conventional graft processes. Their graft chains are short, being highly branched and chlorinated. The graft copolymers have no crosslinking structure. The unique molecular structure will make the materials equipped with special properties.
Resumo:
Glass beads were used to improve the mechanical and thermal properties of high-density polyethylene (HDPE). HDPE/glass-bead blends were prepared in a Brabender-like apparatus, and this was followed by press molding. Static tensile measurements showed that the modulus of the HDPE/glass-bead blends increased considerably with increasing glass-bead content, whereas the yield stress remained roughly unchanged at first and then decreased slowly with increasing glass-bead content. Izod impact tests at room temperature revealed that the impact strength changed very slowly with increasing glass-bead content up to a critical value; thereafter, it increased sharply with increasing glass-bead content. That is, the lzod impact strength of the blends underwent a sharp transition with increasing glass-bead content. It was calculated that the critical interparticle distance for the HDPE/glass-bead blends at room temperature (25degreesC) was 2.5 mum. Scanning electron microscopy observations indicated that the high impact strength of the HDPE/glass-bead blends resulted from the deformation of the HDPE matrix. Dynamic mechanical analyses and thermogravimetric measurements implied that the heat resistance and heat stability of the blends tended to increase considerably with increasing glass-bead content.
Resumo:
In this study, we established a correlation between cavitations volume and the brittle-ductile transition (BDT) for particle toughened thermoplastics. The brittle-ductile transition temperature (T-BD) was calculated as a function of T* and interparticle distance (ED), respectively, where T* was a parameter related to the volume of cavitations. The results showed that the smaller the cavitations volume, the higher the brittle-ductile transition temperature. The calculations correlated well with the experimental data. With respect to rubber particle, the rigid particle was too hard to be voided during deformation, thereby the TED of the blend was much higher than that of rubber particle toughened thermoplastic. This was a main reason that rubber particle could toughen thermoplastics effectively, whereas rigid particle could not.
Resumo:
MP-25 resin is a chlorine-containing polymer widely used in coatings. The effects of two types of nano-TiO2 (P-25 and RM301 LP) on MP-25 were studied with saline immersion, UV irradiation, and electrochemical impedance spectroscopy. UV irradiation was evaluated in terms of gloss change and X-ray photoelectron spectroscopy (XPS). The results indicate that, compared to pigment R-930 TiO2, P-25 reduced the immersion resistance and accelerated UV aging of the MP-25 coating, whereas RM301 LP showed the opposite effects. XPS analysis showed that MP-25 resin degraded under UV irradiation via dechlorination and C-C bond breakage, similarly to poly(vinyl chloride), but RM301 LP could inhibit the aging of MP-25 to a certain extent. A skin effect of oxygen and chlorine was identified in MP-25 resin by XPS. RM301 LP could improve the impedance of the MP-25 coating because of its excellent fill capacity. Hence, rutile nano-TiO2 RM301 LP represents an excellent additive for MP-25 resin. (c) 2007 Wiley Periodicals, Inc.
Resumo:
An innovative bioadhesive patch intended primarily as a vulval drug delivery system and, specifically, as a means to deliver photosensitisers, or their prodrugs, for photodynamic purposes is described. The patch was formulated with a copolymer of methyl vinyl ether and maleic anhydride (PMVE/MA) as a bioadhesive matrix and poly(vinyl chloride) as a drug-impervious backing layer. Adhesive strength to neonate porcine skin, as a model substrate, was evaluated using peel and tensile testing measurements. Acceptabilities of non-drug loaded patches were appraised using human volunteers and visual-analogue scoring devices. An optimal formulation, with water uptake and peel strengths appropriate for vulval drug delivery, was cast from a 20% (w/w) PMVE/MA solution and adhered with a strength of approximately 1.7 N cm-2. Patient evaluation demonstrated comfort and firm attachment for up to 4 h in mobile patients. Aminolevulinic acid, a commonly used photosensitiser, was formulated into the candidate formulation and applied to vulval intraepithelial neoplastic lesions. Fluorescence under ultraviolet illumination revealed protoporphyrin synthesis. The patch achieves the extended application times obligatory in topical photodynamic therapy of vulval lesions, thereby contributing to potential methods for the eradication of neoplastic lesions in the lower female reproductive tract.
Resumo:
Contamination of medical devices with bacteria such as Meticillin resistant Staphylococcus aureus (MRSA) is of great clinical concern. Poly(vinyl chloride) is widely used in the production of medical devices, such as catheters. The flexibility of catheter tubing is derived from the addition of plasticisers. Here, we report the design of two dual functional ionic liquids, 1-ethylpyridinium docusate and tributyl(2-hydroxyethyl)phosphonium docusate, which uniquely provide a plasticising effect, and exhibit antimicrobial and antibiofilm-forming activity to a range of antibiotic resistant bacteria. The plasticisation of poly(vinyl chloride) was tailored as a function of ionic liquid concentration. The effective antimicrobial behaviour of both ionic liquids originates from the chemical structure of the anion or cation and is not limited to the length of the alkyl chain on the anion/cation. The design approach adopted will be useful in developing ionic liquids as multi-functional additives for polymers.
Resumo:
Two ionic liquids, 1-ethylpyridinium docusate (IL1) and tri-n-butyl(2-hydroxyethyl)phosphonium docusate (IL2), were designed and synthesized with the explicit intention of imparting a combination of plasticization and antimicrobial efficacy when incorporated into medical grade poly(vinyl chloride)s (PVCs). The glass transition (T-g) of PVC can be reduced by >20 degrees C on addition of 15 wt% IL2. Both IL1 and IL2 leached to varying extents from the base PVC resins rendering the surface of the PVCs hydrophilic. The antimicrobial activity of both ILs is related to the presence and concentration of both cationic and anionic component of the ILs leached from the PVC and inversely proportional to the extent of PVC gelation. Blends of the PVCs with IL1 displayed antibacterial activity against almost all Gram-positive bacteria tested, including coagulase-negative Staphylococci (CoNS) and methicillin-resistant Staphylococcus aureus (MRSA), but not with IL2 at low concentration in contrast to our previous study when high concentrations of IL2 were used. The more hydrophilic IL1 when added to PVC retards biofilm formation.
Resumo:
This paper presents a novel strategy for the prevention of ventilator-associatedpneumonia that involves coating poly(vinyl chloride, PVC) endotracheal tubes (ET) withhydrogels that may be subsequently used to entrap nebulized antimicrobial solutions. Candidatehydrogels were prepared containing a range of ratios of hydroxyethyl methacrylate (HEMA) andmethacrylic acid (MAA) from 100:0 to 70:30 using free radical polymerization and, whenrequired, simultaneous attachment to PVC was performed. The mechanical properties, glasstransition temperatures, swelling kinetics, uptake of gentamicin from an aqueous medium, andgentamicin release were characterized. Increasing the MAA content of the hydrogels significantlydecreased the ultimate tensile strength, % elongation at break, Young’s modulus, and increasedthe glass transition temperature, the swelling ratio, and gentamicin uptake. Microbial(Staphylococcus aureus and Pseudomonas aeruginosa) adherence to control (drug-free) hydrogelswas observed; however, while adherence to gentamicin-containing p(HEMA) occurred, noadherence occurred to gentamicin-containing HEMA:MAA copolymers. Antimicrobialpersistence of gentamicin-containing hydrogels was examined by determining the zone ofinhibition against each microorganism on successive days. Hydrogel composition affected the observed antimicrobial persistence,with the hydrogel composed of 70:30 HEMA:MAA exhibiting >20 days persistence against S. aureus and P. aeruginosa,respectively. To simulate clinical use, the hydrogels (coated onto PVC) were first exposed to a nebulized solution of gentamicin(4 mL, 80 mg for 20 min), and then to nebulized bacteria (4 mL ca. 1 × 109 colony forming units mL−1, 30 min). Viable bacteriawere not observed on the gentamicin-treated p(HEMA: MAA) copolymers, whereas growth was observed on gentamicin-treatedp(HEMA). In light of the excellent antimicrobial activity and physicochemical properties, p(HEMA: MAA) copolymerscomposed of ratios of 80:20 or 70:30 HEMA: MAA were identified as potentially useful coatings of endotracheal tubes to be usedin conjunction with the clinical nebulization of gentamicin and designed for the prevention of ventilator-associated pneumonia
Resumo:
A biomimetic sensor for norfloxacin is presented that is based on host-guest interactions and potentiometric transduction. The artificial host was imprinted into polymers made from methacrylic acid and/or 2-vinyl pyridine. The resulting particles were entrapped in a plasticized poly(vinyl chloride) (PVC) matrix. The sensors exhibit near-Nernstian response in steady state evaluations, and detection limits range from 0.40 to 1.0 μgmL−1, respectively, and are independent of pH values at between 2 and 6, and 8 and 11, respectively. Good selectivity was observed over several potential interferents. In flowing media, the sensors exhibit fast response, a sensitivity of 68.2 mV per decade, a linear range from 79 μM to 2.5 mM, a detection limit of 20 μgmL−1, and a stable baseline. The sensors were successfully applied to field monitoring of norfloxacin in fish samples, biological samples, and pharmaceutical products
Resumo:
A flow injection analysis (FIA) system having a chlormequat selective electrode is proposed. Several electrodes with poly(vinyl chloride) based membranes were constructed for this purpose. Comparative characterization suggestedthe use of membrane with chlormequat tetraphenylborate and dibutylphthalate. On a single-line FIA set-up, operating with 1x10-2 mol L-1 ionic strength and 6.3 pH, calibration curves presented slopes of 53.6±0.4mV decade-1 within 5.0x10-6 and1.0x10-3 mol L-1, andsquaredcorrelation coefficients >0.9953. The detection limit was 2.2x10-6 mol L-1 and the repeatability equal to ±0.68mV (0.7%). A dual-channel FIA manifold was therefore constructed, enabling automatic attainment of previous ionic strength andpH conditions and thus eliminating sample preparation steps. Slopes of 45.5±0.2mV decade -1 along a concentration range of 8.0x10-6 to 1.0x10-3 mol L-1 with a repeatability ±0.4mV (0.69%) were obtained. Analyses of real samples were performed, and recovery gave results ranging from 96.6 to 101.1%.
Resumo:
A 3D-mirror synthetic receptor for ciprofloxacin host–guest interactions and potentiometric transduction is presented. The host cavity was shaped on a polymeric surface assembled with methacrylic acid or 2-vinyl pyridine monomers by radical polymerization. Molecularly imprinted particles were dispersed in 2-nitrophenyl octyl ether and entrapped in a poly(vinyl chloride) matrix. The sensors exhibited a near-Nernstian response in steady state evaluations. Slopes and detection limits ranged from 26.8 to 50.0mVdecade−1 and 1.0×10−5 to 2.7×10−5 mol L−1, respectively. Good selectivity was observed for trimethoprim, enrofloxacin, tetracycline, cysteine, galactose, hydroxylamine, creatinine, ammonium chloride, sucrose, glucose, sulphamerazine and sulfadiazine. The sensors were successfully applied to the determination of ciprofloxacin concentrations in fish and in pharmaceuticals. The method presented offered the advantages of simplicity, accuracy, applicability to colored and turbid samples and automation feasibility, as well as confirming the use of molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction.