160 resultados para Polinômios algébricos
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Este artigo propõe uma nova metodologia prática e robusta para estimar parâmetros de geradores síncronos. A metodologia proposta utiliza a análise de sensibilidade de trajetória combinada com uma nova abordagem, denominada 'abordagem de minimização' para estimação de parâmetros de sistemas dinâmicos não-lineares modelados por conjuntos de equações algébricos diferenciais. Uma escolha adequada de entradas e saídas permite a divisão da estimação de parâmetros do gerador na estimação independente dos parâmetros elétricos e mecânicos. A metodologia é robusta com relação às condições iniciais dos parâmetros, não requer execução de testes especiais e utiliza apenas medidas de perturbações de fácil obtenção (correntes e tensões trifásicas, tensão de campo e velocidade do rotor) coletadas do sistema de energia elétrica sem desconectar o gerador da rede.
Resumo:
A necessidade de obter solução de grandes sistemas lineares resultantes de processos de discretização de equações diferenciais parciais provenientes da modelagem de diferentes fenômenos físicos conduz à busca de técnicas numéricas escaláveis. Métodos multigrid são classificados como algoritmos escaláveis.Um estimador de erros deve estar associado à solução numérica do problema discreto de modo a propiciar a adequada avaliação da solução obtida pelo processo de aproximação. Nesse contexto, a presente tese caracteriza-se pela proposta de reutilização das estruturas matriciais hierárquicas de operadores de transferência e restrição dos métodos multigrid algébricos para acelerar o tempo de solução dos sistemas lineares associados à equação do transporte de contaminantes em meio poroso saturado. Adicionalmente, caracteriza-se pela implementação das estimativas residuais para os problemas que envolvem dados constantes ou não constantes, os regimes de pequena ou grande advecção e pela proposta de utilização das estimativas residuais associadas ao termo de fonte e à condição inicial para construir procedimentos adaptativos para os dados do problema. O desenvolvimento dos códigos do método de elementos finitos, do estimador residual e dos procedimentos adaptativos foram baseados no projeto FEniCS, utilizando a linguagem de programação PYTHONR e desenvolvidos na plataforma Eclipse. A implementação dos métodos multigrid algébricos com reutilização considera a biblioteca PyAMG. Baseado na reutilização das estruturas hierárquicas, os métodos multigrid com reutilização com parâmetro fixo e automática são propostos, e esses conceitos são estendidos para os métodos iterativos não-estacionários tais como GMRES e BICGSTAB. Os resultados numéricos mostraram que o estimador residual captura o comportamento do erro real da solução numérica, e fornece algoritmos adaptativos para os dados cuja malha retornada produz uma solução numérica similar à uma malha uniforme com mais elementos. Adicionalmente, os métodos com reutilização são mais rápidos que os métodos que não empregam o processo de reutilização de estruturas. Além disso, a eficiência dos métodos com reutilização também pode ser observada na solução do problema auxiliar, o qual é necessário para obtenção das estimativas residuais para o regime de grande advecção. Esses resultados englobam tanto os métodos multigrid algébricos do tipo SA quanto os métodos pré-condicionados por métodos multigrid algébrico SA, e envolvem o transporte de contaminantes em regime de pequena e grande advecção, malhas estruturadas e não estruturadas, problemas bidimensionais, problemas tridimensionais e domínios com diferentes escalas.
Resumo:
Este trabalho propõe uma extensão do método de propagação de feixe (BPM - Beam Propagation Method) para a análise de guias de ondas ópticos e acopladores baseados em materiais não-lineares do tipo Kerr. Este método se destina à investigação de estruturas onde a utilização da equação escalar de Helmholtz (EEH) em seu limite paraxial não mais se aplica. Os métodos desenvolvidos para este fim são denominados na literatura como métodos de propagação de feixe de ângulo largo. O formalismo aqui desenvolvido é baseado na técnica das diferenças finitas e nos esquemas de Crank-Nicholson (CN) e Douglas generalizado (GD). Estes esquemas apresentam como característica o fato de apresentarem um erro de truncamento em relação ao passo de discretização transversal, Δx, proporcional a O(Δx2) para o primeiro e O(Δx4). A convergência do método em ambos esquemas é otimizada pela utilização de um algoritmo interativo para a correção do campo no meio não-linear. O formalismo de ângulo largo é obtido pela expansão da EEH para os esquemas CN e GD em termos de polinômios aproximantes de Padé de ordem (1,0) e (1,1) para CN e GD, e (2,2) e (3,3) para CN. Os aproximantes de ordem superior a (1,1) apresentam sérios problemas de estabilidade. Este problema é eliminado pela rotação dos aproximantes no plano complexo. Duas condições de contorno nos extremos da janela computacional são também investigadas: 1) (TBC - Transparent Boundary Condition) e 2) condição de contorno absorvente (TAB - Transparent Absorbing Boundary). Estas condições de contorno possuem a facilidade de evitar que reflexões indesejáveis sejam transmitidas para dentro da janela computacional. Um estudo comparativo da influência destas condições de contorno na solução de guias de ondas ópticos não-lineares é também abordada neste trabalho.
Resumo:
The subject of this thesis is the real-time implementation of algebraic derivative estimators as observers in nonlinear control of magnetic levitation systems. These estimators are based on operational calculus and implemented as FIR filters, resulting on a feasible real-time implementation. The algebraic method provide a fast, non-asymptotic state estimation. For the magnetic levitation systems, the algebraic estimators may replace the standard asymptotic observers assuring very good performance and robustness. To validate the estimators as observers in closed-loop control, several nonlinear controllers are proposed and implemented in a experimental magnetic levitation prototype. The results show an excellent performance of the proposed control laws together with the algebraic estimators.
Resumo:
We present indefinite integration algorithms for rational functions over subfields of the complex numbers, through an algebraic approach. We study the local algorithm of Bernoulli and rational algorithms for the class of functions in concern, namely, the algorithms of Hermite; Horowitz-Ostrogradsky; Rothstein-Trager and Lazard-Rioboo-Trager. We also study the algorithm of Rioboo for conversion of logarithms involving complex extensions into real arctangent functions, when these logarithms arise from the integration of rational functions with real coefficients. We conclude presenting pseudocodes and codes for implementation in the software Maxima concerning the algorithms studied in this work, as well as to algorithms for polynomial gcd computation; partial fraction decomposition; squarefree factorization; subresultant computation, among other side algorithms for the work. We also present the algorithm of Zeilberger-Almkvist for integration of hyperexpontential functions, as well as its pseudocode and code for Maxima. As an alternative for the algorithms of Rothstein-Trager and Lazard-Rioboo-Trager, we yet present a code for Benoulli’s algorithm for square-free denominators; and another for Czichowski’s algorithm, although this one is not studied in detail in the present work, due to the theoretical basis necessary to understand it, which is beyond this work’s scope. Several examples are provided in order to illustrate the working of the integration algorithms in this text
Resumo:
Suszko’s Thesis is a philosophical claim regarding the nature of many-valuedness. It was formulated by the Polish logician Roman Suszko during the middle 70s and states the existence of “only but two truth values”. The thesis is a reaction against the notion of many-valuedness conceived by Jan Łukasiewicz. Reputed as one of the modern founders of many-valued logics, Łukasiewicz considered a third undetermined value in addition to the traditional Fregean values of Truth and Falsehood. For Łukasiewicz, his third value could be seen as a step beyond the Aristotelian dichotomy of Being and non-Being. According to Suszko, Łukasiewicz’s ideas rested on a confusion between algebraic values (what sentences describe/denote) and logical values (truth and falsity). Thus, Łukasiewicz’s third undetermined value is no more than an algebraic value, a possible denotation for a sentence, but not a genuine logical value. Suszko’s Thesis is endorsed by a formal result baptized as Suszko’s Reduction, a theorem that states every Tarskian logic may be characterized by a two-valued semantics. The present study is intended as a thorough investigation of Suszko’s thesis and its implications. The first part is devoted to the historical roots of many-valuedness and introduce Suszko’s main motivations in formulating the double character of truth-values by drawing the distinction in between algebraic and logical values. The second part explores Suszko’s Reduction and presents the developments achieved from it; the properties of two-valued semantics in comparison to many-valued semantics are also explored and discussed. Last but not least, the third part investigates the notion of logical values in the context of non-Tarskian notions of entailment; the meaning of Suszko’s thesis within such frameworks is also discussed. Moreover, the philosophical foundations for non-Tarskian notions of entailment are explored in the light of recent debates concerning logical pluralism.
Resumo:
Doutoramento em Matemática e Estatística - Instituto Superior de Agronomia - UL