969 resultados para Plio-Pleistocene
Resumo:
DSDP Hole 552A, cored with the HPC on Hatton Drift, represents an almost complete and undisturbed sediment section spanning the late Neogene and Quaternary. Lithologic, faunal, isotopic, and paleomagnetic analyses indicate that the section represents the most complete deep sea record of climatic evolution hitherto recovered at high latitudes in the northern hemisphere. A glacial record of remarkable resolution for the late Pliocene and Pleistocene is provided by oxygen and carbon isotope ratios in benthic foraminifers. In the upper part of the section, the whole of the standard oxygen isotope record of the past million years is well preserved. The onset of ice-rafting and glacial-interglacial alternations occurs at about 2.4 m.y. ago.
Resumo:
A procedure is presented to separate diatoms and radiolaria from marine sediments and from each other, to purify them of elements associated with other phases, and to dissolve them to determine their elemental composition. The cleaning procedure eliminates artifacts due to the presence of detrital clays and the high sorption capacity of hydrated silica. The concentration of trace elements (Al, Fe, Mg, and Ba) that we find in alkaline dissolutions of clean diatoms are at least an order of magnitude lower than previously reported. The overall long-term precision in the determination of Ge/Si in a sub-standard of clean diatoms is ±0.024 * 10**-6 (1 sigma). Ge/Si measured in diatoms and radiolaria from core tops indicates that high-latitude Holocene diatoms accurately record the present-day oceanic Ge/Si, while radiolarian ratios are systematically lower and display more scatter. Evaluation of Ge/Si in diatoms and radiolaria from Hole DSDP 265 (Plio-Pleistocene) suggests that post-depositional alteration of the ratio does not occur at this site, but the average ratio carried by diatoms over this time interval was lower than that in the present ocean.
Resumo:
The astronomical timescale of the Eastern Mediterranean Plio-Pleistocene builds on tuning of sapropel layers to Northern Hemisphere summer insolation maxima. A 3000-year precession lag has become instrumental in the tuning procedure as radiocarbon dating revealed that the midpoint of the youngest sapropel, S1, in the early Holocene occurred approximately 3000 years after the insolation maximum. The origin of the time lag remains elusive, however, because sapropels are generally linked to maximum African monsoon intensities and transient climate modeling results indicate an in-phase behavior of the African monsoon relative to precession forcing. Here we present new high-resolution records of bulk sediment geochemistry and benthic foraminiferal oxygen isotopes from ODP Site 968 in the Eastern Mediterranean. We show that the 3000-year precession time lag of the sapropel midpoints is consistent with (1) the global marine isotope chronology, (2) maximum (monsoonal) precipitation conditions in the Mediterranean region and China derived from radiometrically dated speleothem records, and (3) maximum atmospheric methane concentrations in Antarctica ice cores. We show that the time lag relates to the occurrence of precession-paced North Atlantic cold events, which systematically delayed the onset of strong boreal summer monsoon intensity. Our findings may also explain a non-stationary behavior of the African monsoon over the past 3 million years due to more frequent and intensive cold events in the Late Pleistocene.
Resumo:
Correlations of biostratigraphic datums to the geomagnetic reversal time scale (GRTS) at Leg 107 sites provide a means of correlating these datums to sections outside the Mediterranean. Unfortunately, poor recovery and core deformation due to rotary drilling at Sites 651, 652, and 654 severely hampered efforts to acquire detailed magnetostratigraphies and biostratigraphies. However, many biostratigraphic markers could be correlated to the GRTS, including those close to the Miocene/Pliocene and Tortonian/Messinian boundaries. These boundaries are interpreted to occur in Chrons 3r and 3B, respectively (chron nomenclature after Cox, 1982). Comparison of the correlation of Plio-Pleistocene calcareous plankton biostratigraphic events to the GRTS in the Mediterranean and in the open oceans indicates that many events are broadly synchronous between the two environments. The outstanding exception is the first occurrence of Globorotalia margaritae which is delayed in the Mediterranean by about 1 m.y.
Resumo:
Coccoliths, calcite plates produced by the marine phytoplankton coccolithophores, have previously shown a large array of carbon and oxygen stable isotope fractionations (termed "vital effects"), correlated to cell size and hypothesized to reflect the varying importance of active carbon acquisition strategies. Culture studies show a reduced range of vital effects between large and small coccolithophores under high CO2, consistent with previous observations of a smaller range of interspecific vital effects in Paleocene coccoliths. We present new fossil data examining coccolithophore vital effects over three key Cenozoic intervals reflecting changing climate and atmospheric partial pressure of CO2 (pCO2). Oxygen and carbon stable isotopes of size-separated coccolith fractions dominated by different species from well preserved Paleocene-Eocene thermal maximum (PETM, ~56 Ma) samples show reduced interspecific differences within the greenhouse boundary conditions of the PETM. Conversely, isotope data from the Plio-Pleistocene transition (PPT; 3.5-2 Ma) and the last glacial maximum (LGM; ~22 ka) show persistent vital effects of ~2 per mil. PPT and LGM data show a clear positive trend between coccolith (cell) size and isotopic enrichment in coccolith carbonate, as seen in laboratory cultures. On geological timescales, the degree of expression of vital effects in coccoliths appears to be insensitive topCO2 changes over the range ~350 ppm (Pliocene) to ~180 ppm (LGM). The modern array of coccolith vital effects arose after the PETM but before the late Pliocene and may reflect the operation of more diverse carbon acquisition strategies in coccolithophores in response to decreasing Cenozoic pCO2.
Resumo:
The differential effects of climate change, sea level, and water mass circulation on deposition/erosion of marine sediments can be constrained from the distribution of unconformities in the world's oceans. I identified temporal and depth patterns of hiatuses ("hiatus events") from a large and chronologically well constrained stratigraphic database of deep-sea sediments. The Paleogene is characterized by few, several million year long hiatuses. The most significant Cenozoic hiatus event spans most of the Paleocene. The Neogene is characterized by short, frequent hiatus events nearly synchronous in shallow and deep water sediments. Epoch boundaries are characterized by peaks in deep water hiatuses possibly caused by an increased circulation of corrosive bottom water and sediment dissolution. The Plio-Pleistocene is characterized by a gradual decrease in the frequency of hiatuses. Future studies will focus on the regional significance of the hiatus events and their possible causes.
Resumo:
Modern erosion of the Himalaya, the world's largest mountain range, transfers huge dissolved and particulate loads to the ocean. It plays an important role in the long-term global carbon cycle, mostly through enhanced organic carbon burial in the Bengal Fan. To understand the role of past Himalayan erosion, the influence of changing climate and tectonic on erosion must be determined. Here we use a 12 Myr sedimentary record from the distal Bengal Fan (Deep Sea Drilling Project Site 218) to reconstruct the Mio-Pliocene history of Himalayan erosion. We use carbon stable isotopes (d13C) of bulk organic matter as paleo-environmental proxy and stratigraphic tool. Multi-isotopic - Sr, Nd and Os - data are used as proxies for the source of the sediments deposited in the Bengal Fan over time. d13C values of bulk organic matter shift dramatically towards less depleted values, revealing the widespread Late Miocene (ca. 7.4 Ma) expansion of C4 plants in the basin. Sr, Nd and Os isotopic compositions indicate a rather stable erosion pattern in the Himalaya range during the past 12 Myr. This supports the existence of a strong connection between the southern Tibetan plateau and the Bengal Fan. The tectonic evolution of the Himalaya range and Southern Tibet seems to have been unable to produce large re-organisation of the drainage system. Moreover, our data do not suggest a rapid change of the altitude of the southern Tibetan plateau during the past 12 Myr. Variations in Sr and Nd isotopic compositions around the late Miocene expansion of C4 plants are suggestive of a relative increase in the erosion of High Himalaya Crystalline rock (i.e. a simultaneous reduction of both Transhimalayan batholiths and Lesser Himalaya relative contributions). This could be related to an increase in aridity as suggested by the ecological and sedimentological changes at that time. A reversed trend in Sr and Nd isotopic compositions is observed at the Plio-Pleistocene transition that is likely related to higher precipitation and the development of glaciers in the Himalaya. These almost synchronous moderate changes in erosion pattern and climate changes during the late Miocene and at the Plio-Pleistocene transition support the notion of a dominant control of climate on Himalayan erosion during this time period. However, stable erosion regime during the Pleistocene is suggestive of a limited influence of the glacier development on Himalayan erosion.
Resumo:
Clay mineral assemblages at ODP Site 1146 in the northern South China Sea are used to investigate sediment source and transport processes and to evaluate the evolution of the East Asian monsoon over the past 2 Myr. Clay minerals consist mainly of illite (22-43%) and smectite (12-48%), with associated chlorite (10-30%), kaolinite (2-18%), and random mixed-layer clays (5-22%). Hydrodynamic and mineralogical studies indicate that illite and chlorite sources include Taiwan and the Yangtze River, that smectite and mixed-layer clays originate predominantly from Luzon and Indonesia, and that kaolinite is primarily derived from the Pearl River. Mineral assemblages indicate strong glacial-interglacial cyclicity, with high illite, chlorite, and kaolinite content during glacials and high smectite and mixed-layer clay content during interglacials. During interglacials, summer enhanced monsoon (southwesterly) currents transport more smectite and mixed-layer clays to Site 1146 whereas during glacials, enhanced winter monsoon (northerly) currents transport more illite and chlorite from Taiwan and the Yangtze River. The ratio (smectite+mixed layers)/(illite+chlorite) was adopted as a proxy for East Asian monsoon variability. Higher ratios indicate strengthened summer-monsoon winds and weakened winter-monsoon winds during interglacials. In contrast, lower ratios indicate a strongly intensified winter monsoon and weakened summer monsoon during glacials. Spectral analysis indicates the mineral ratio was dominantly forced by monsoon variability prior to the development of large-scale glaciation at 1.2 Myr and by both monsoon variability and the effects of changing sea level in the interval 1.2 Myr to present.
Resumo:
Late Neogene stratigraphy of southern Victoria Land Basin is revealed in coastal and offshore drill cores and a network of seismic data in McMurdo Sound, Antarctica. These data preserve a record of ice sheet response to global climate variability and progressive cooling through the past 5 million years. Application of a composite standard age model for diatom event stratigraphy to the McMurdo Sound drill cores provides an internally precise mechanism to correlate stratigraphic data and derive an event history for the basin. These marine records are indirectly compared to data obtained from geological outcrop in the Transantarctic Mountains to produce an integrated history of Antarctic Ice Sheet response to climate variability from the early Pliocene to Recent. Four distinct chronostratigraphic intervals reflect stages and steps in a transition from a relatively warm early Pliocene Antarctic coastal climate to modern cold polar conditions. Several of these stages and steps correlate with global events identified via geochemical proxy data recovered from deep ocean cores in mid to low latitudes. These correlations allow us to consider linkages between the high southern latitudes and tropical regions and establish a temporal framework to examine leads and lags in the climate system through the late Neogene and Quaternary. The relative influence of climate-tectonic feedbacks is discussed in light of glacial erosion and isostatic rebound that also influence the history along the Southern Victoria Land coastal margin.