973 resultados para Platinum-based chemotherapy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increasing awareness of the therapeutic potential for combining immune-based therapies with chemotherapy in the treatment of malignant diseases, but few published studies evaluate possible cytotoxic synergies between chemotherapy and cytotoxic immune cells. Human Vα24 +/Vβ11+ NKT cells are being evaluated for use in cell-based immunotherapy of malignancy because of their immune regulatory functions and potent cytotoxic potential. In this study, we evaluated the cytotoxicity of combinations of chemotherapy and NKT cells to determine whether there is a potential to combine these treatment modalities for human cancer therapy. The cytotoxicity of NKT cells was tested against solid-tumor derived cell lines NCI-H358, DLD-1, HT-29, DU-145, TSU-Pr1 and MDA-MB231, with or without prior treatment of these target cells, with a range of chemotherapy agents. Low concentrations of chemotherapeutic agents led to sensitization of cell lines to NKT-mediated cytotoxicity, with the greatest effect being observed for prostate cancer cells. Synergistic cytotoxicity occurred in an NKT cell in a dose-dependent manner. Chemotherapy agents induced upregulation of cell surface TRAIL-R2 (DR5) and Fas (CD95) expression, increasing the capacity for NKT cells to recognize and kill via TRAIL- and FasL-mediated pathways. We conclude that administration of cytotoxic immune cells after chemotherapy may increase antitumor activities in comparison with the use of either treatment alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combinations of cellular immune-based therapies with chemotherapy and other antitumour agents may be of significant clinical benefit in the treatment of many forms of cancer. Gamma delta (γδ) T cells are of particular interest for use in such combined therapies due to their potent antitumour cytotoxicity and relative ease of generation in vitro. Here, we demonstrate high levels of cytotoxicity against solid tumour-derived cell lines with combination treatment utilizing Vγ9Vδ2 T cells, chemotherapeutic agents and the bisphosphonate, zoledronate. Pre-treatment with low concentrations of chemotherapeutic agents or zoledronate sensitized tumour cells to rapid killing by Vγ9Vδ2 T cells with levels of cytotoxicity approaching 90%. In addition, zoledronate enhanced the chemotherapy-induced sensitization of tumour cells to Vγ9Vδ2 T cell cytotoxicity resulting in almost 100% lysis of tumour targets in some cases. Vγ9Vδ2 T cell cytotoxicity was mediated by perforin following TCR-dependent and isoprenoid-mediated recognition of tumour cells. Production of IFN-γ by Vγ9Vδ2 T cells was also induced after exposure to sensitized targets. We conclude that administration of Vγ9Vδ2 T cells at suitable intervals after chemotherapy and zoledronate may substantially increase antitumour activities in a range of malignancies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Advances in cancer diagnosis and treatment have significantly improved survival rates, through their subsequent health needs are often not adequately addressed by current health services. National Health and Medical Research Council (NHMRC) Partnerships Project awarded a national collaborative project to develop, trial and evaluate clinical benefits and cost effectiveness of an e-health enabled structured health promotion intervention - The Women’s Wellness after Cancer Program (WWACP). The aim of this e-health enabled multimodal intervention is to improve health related quality of life in women previously treated for target cancers. Aim The WWACP is a 12-week web based, interactive, holistic program. Primary outcomes for this project are to promote a positive change in health-related quality of life (HRQoL) and reduction in Body Mass Index (BMI) in the women undertaking WWACP compared to women who receive usual care. Secondary outcomes include managing other side effects of cancer treatment through evidence-based nutrition and exercise practices, dealing with stress, sleep, menopause and sexuality issues. Methods The single-blinded multi-center randomized controlled trial recruited a toatl of 330 women within 24 months of completion of chemotherapy and /or radiotherapy. Women were randomly assigned to either a usual care or intervention group. Women provided with the intervention were provided with an interactive iBook and journal, web interface, and three virtual consultations by experienced cancer nurses. A variety of methods were utilized, to enable positive self- efficacy and lifestyle changes. These include online coaching with a registered nurse trained in the intervention, plus written educational and health promotional information. The program has been delivered through the e-health enabled interfaces, which enables virtual delivery via desktop and mobile computing devices. Importantly this enables accessibility for rural and regional women in Australia who are frequently geographically disadvantaged in terms of health care provision. Results Research focusing on alternative methods of delivering post treatment / or survivorship care in cancer utilizing web based interfaces is limited, but emerging evidence suggests that Internet interventions can increase psychological and physical wellbeing in cancer patients. The WWACP trial aims to establish the effectiveness of delivery of the program in terms of positive patient outcomes and cost effective, flexibility. The trial will be completed in September and results will be presented at the conference. Conclusions Women after acute hematological, breast and gynecological cancer treatments demonstrate good cancer survival rates and face residual health problems which are amenable to behavioral interventions. The conclusion of active treatment is a key 'teachable moment' in which sustainable positive lifestyle change can be achieved if patients receive education and psychological support which targets key treatment related health problems and known chronic disease risk factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (β-ketoacyl-ACP synthase), FabG (β-ketoacyl-ACP reductase), FabZ (β-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (–)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (β-ketoacyl-ACP synthase), FabG (β-ketoacyl-ACP reductase), FabZ (β-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (–)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resistance temperature detectors (RTDs) are being widely used to detect low temperature, while thermocouples (TCs) are being used to detect high temperature. The materials suitable for RTDs are platinum, germanium, carbon, carbon-glass, cernox, etc. Here, we have reported the possible application of another form of carbon i.e. carbon nanotubes in low temperature thermometry. It has been shown the resistance R and the sensitivity of carbon nanotube bundles can be tuned and made suitable for ultralow temperature detection. We report on the R-T measurement of carbon nanotube bundles from room temperature down to 1 K to felicitate the possible application of bundles in low temperature RTDs. ©2008 American Institute of Physics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2 + 4] self-assembly of a pyrene-functionalized Pt-8(II) tetragonal prism (2) is achieved using a newly designed star-shaped organometallic acceptor (1) in combination with an amide-based ``clip'' donor (L). The propensity of this prism (2) as a selective sensor for nitroaromatics (2,4-dinitrotoluene, 1,3,5-trinitrotoluene, and picric acid), which are the chemical constituents of many commercial explosives, has been examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gold-core platinum-shell (Au@Pt) nanoparticles with ultrathin platinum overlayers, ranging from submonolayer to two monolayers of platinum atoms, were prepared at room-temperature using a scalable, wet-chemical synthesis route. The synthesis involved the reduction of chloroauric acid with tannic acid to form 5 nm (nominal dia.) gold nanoparticles followed by addition of desired amount of chloroplatinic acid and hydrazine to form platinum overlayers with bulk Pt/Au atomic ratios (Pt surface coverages) corresponding to 0.19 (half monolayer), 0.39 (monolayer), 0.58 (1.5 monolayer) and 0.88 (2 monolayers). The colloidal particles were coated with octadecanethiol and phase-transferred into chlroform-hexane mixture to facilitate sample preparation for structural characterization. The structure of the resultant nanoparticles were determined to be Au@Pt using HRTEM, SAED, XPS, UV-vis and confirmed by cyclic voltammetry (CV) studies. Monolayers of octadecanethiol coated Au@Pt nanoparticles were self-assembled at an air-water interface and transfer printed twice onto a gold substrate to form bilayer films for electrochemical characterization. Electrochemical activity on such films was observed only after the removal of the octadecanethiol ligand coating the nanoparticles, using a RF plasma etching process. The electrochemical activity (HOR, MOR studies) of Au@Pt nanoparticles was found to be highest for particles having a two atom thick platinum overlayer. These nanoparticles can significantly enhance platinum utilization in electrocatalytic applications as their platinum content based activity was three times higher than pure platinum nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small size actuators (8 mm x 1 mm), IPMNC (RuO2/Nafion) and IPMNC (LbL/CNC) are studied for flapping at the frequency of insects and compared to Platinum IPMC-Pt. Flapping wing actuators based on IPMNC (RuO2/Nafion) are modeled with the size of three dragonfly species. To achieve maximum actuation performance with Sympetrum Frequens scale actuator with optimized Young's modulus, the effect of variation of thickness of electrode and Nafion region of Sympetrum Frequens scale actuator is studied. A trade-off in the electrode thickness and Young's modulus for dragonfly size IPMNC-RuO2/Nafion actuator is essential to achieve the desirable flapping performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A temperature-controlled pool boiling (TCPB) device was developed to perform pool boiling heat transfer studies at both normal gravity on Earth and microgravity in the drop tower Beijing and aboard a Chinese recovery satellite. Two platinum wires of 60 ?m in diameter were simultaneously used as heaters and thermometers. The lengths were 30 mm and 40 mm, respectively. The ends of wires were soldered with copper poles to provide low resistance paths for the electric current. The heater resistance, and thus the heater temperature, was kept constant by a feedback circuit similar to that used in constant-temperature hot-wire anemometry. The fluid was R113 at 0.1 Mpa and subcooled by 30 ?C nominally for all cases. The results of the experiments at normal gravity were presented. Four modes, namely single-phase convection, nucleate boiling, transition two-mode boiling, and film boiling were observed. A few data obtained from several preliminary experiments at microgravity in the drop tower Beijing were also presented. A slight increase of the heat flux was obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

46 p.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental studies were conducted with the goals of 1) determining the origin of Pt- group element (PGE) alloys and associated mineral assemblages in refractory inclusions from meteorites and 2) developing a new ultrasensitive method for the in situ chemical and isotopic analysis of PGE. A general review of the geochemistry and cosmochemistry of the PGE is given, and specific research contributions are presented within the context of this broad framework.

An important step toward understanding the cosmochemistry of the PGE is the determination of the origin of POE-rich metallic phases (most commonly εRu-Fe) that are found in Ca, AJ-rich refractory inclusions (CAI) in C3V meteorites. These metals occur along with γNi-Fe metals, Ni-Fe sulfides and Fe oxides in multiphase opaque assemblages. Laboratory experiments were used to show that the mineral assemblages and textures observed in opaque assemblages could be produced by sulfidation and oxidation of once homogeneous Ni-Fe-PGE metals. Phase equilibria, partitioning and diffusion kinetics were studied in the Ni-Fe-Ru system in order to quantify the conditions of opaque assemblage formation. Phase boundaries and tie lines in the Ni-Fe-Ru system were determined at 1273, 1073 and 873K using an experimental technique that allowed the investigation of a large portion of the Ni-Fe-Ru system with a single experiment at each temperature by establishing a concentration gradient within which local equilibrium between coexisting phases was maintained. A wide miscibility gap was found to be present at each temperature, separating a hexagonal close-packed εRu-Fe phase from a face-centered cubic γNi-Fe phase. Phase equilibria determined here for the Ni-Fe-Ru system, and phase equilibria from the literature for the Ni-Fe-S and Ni-Fe-O systems, were compared with analyses of minerals from opaque assemblages to estimate the temperature and chemical conditions of opaque assemblage formation. It was determined that opaque assemblages equilibrated at a temperature of ~770K, a sulfur fugacity 10 times higher than an equilibrium solar gas, and an oxygen fugacity 106 times higher than an equilibrium solar gas.

Diffusion rates between -γNi-Fe and εRu-Fe metal play a critical role in determining the time (with respect to CAI petrogenesis) and duration of the opaque assemblage equilibration process. The diffusion coefficient for Ru in Ni (DRuNi) was determined as an analog for the Ni-Fe-Ru system by the thin-film diffusion method in the temperature range of 1073 to 1673K and is given by the expression:

DRuNi (cm2 sec-1) = 5.0(±0.7) x 10-3 exp(-2.3(±0.1) x 1012 erg mole-1/RT) where R is the gas constant and T is the temperature in K. Based on the rates of dissolution and exsolution of metallic phases in the Ni-Fe-Ru system it is suggested that opaque assemblages equilibrated after the melting and crystallization of host CAI during a metamorphic event of ≥ 103 years duration. It is inferred that opaque assemblages originated as immiscible metallic liquid droplets in the CAI silicate liquid. The bulk compositions of PGE in these precursor alloys reflects an early stage of condensation from the solar nebula and the partitioning of V between the precursor alloys and CAI silicate liquid reflects the reducing nebular conditions under which CAI were melted. The individual mineral phases now observed in opaque assemblages do not preserve an independent history prior to CAI melting and crystallization, but instead provide important information on the post-accretionary history of C3V meteorites and allow the quantification of the temperature, sulfur fugacity and oxygen fugacity of cooling planetary environments. This contrasts with previous models that called upon the formation of opaque assemblages by aggregation of phases that formed independently under highly variable conditions in the solar nebula prior to the crystallization of CAI.

Analytical studies were carried out on PGE-rich phases from meteorites and the products of synthetic experiments using traditional electron microprobe x-ray analytical techniques. The concentrations of PGE in common minerals from meteorites and terrestrial rocks are far below the ~100 ppm detection limit of the electron microprobe. This has limited the scope of analytical studies to the very few cases where PGE are unusually enriched. To study the distribution of PGE in common minerals will require an in situ analytical technique with much lower detection limits than any methods currently in use. To overcome this limitation, resonance ionization of sputtered atoms was investigated for use as an ultrasensitive in situ analytical technique for the analysis of PGE. The mass spectrometric analysis of Os and Re was investigated using a pulsed primary Ar+ ion beam to provide sputtered atoms for resonance ionization mass spectrometry. An ionization scheme for Os that utilizes three resonant energy levels (including an autoionizing energy level) was investigated and found to have superior sensitivity and selectivity compared to nonresonant and one and two energy level resonant ionization schemes. An elemental selectivity for Os over Re of ≥ 103 was demonstrated. It was found that detuning the ionizing laser from the autoionizing energy level to an arbitrary region in the ionization continuum resulted in a five-fold decrease in signal intensity and a ten-fold decrease in elemental selectivity. Osmium concentrations in synthetic metals and iron meteorites were measured to demonstrate the analytical capabilities of the technique. A linear correlation between Os+ signal intensity and the known Os concentration was observed over a range of nearly 104 in Os concentration with an accuracy of ~ ±10%, a millimum detection limit of 7 parts per billion atomic, and a useful yield of 1%. Resonance ionization of sputtered atoms samples the dominant neutral-fraction of sputtered atoms and utilizes multiphoton resonance ionization to achieve high sensitivity and to eliminate atomic and molecular interferences. Matrix effects should be small compared to secondary ion mass spectrometry because ionization occurs in the gas phase and is largely independent of the physical properties of the matrix material. Resonance ionization of sputtered atoms can be applied to in situ chemical analysis of most high ionization potential elements (including all of the PGE) in a wide range of natural and synthetic materials. The high useful yield and elemental selectivity of this method should eventually allow the in situ measurement of Os isotope ratios in some natural samples and in sample extracts enriched in PGE by fire assay fusion.

Phase equilibria and diffusion experiments have provided the basis for a reinterpretation of the origin of opaque assemblages in CAI and have yielded quantitative information on conditions in the primitive solar nebula and cooling planetary environments. Development of the method of resonance ionization of sputtered atoms for the analysis of Os has shown that this technique has wide applications in geochemistry and will for the first time allow in situ studies of the distribution of PGE at the low concentration levels at which they occur in common minerals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer chemotherapy has advanced from highly toxic drugs to more targeted treatments in the last 70 years. Chapter 1 opens with an introduction to targeted therapy for cancer. The benefits of using a nanoparticle to deliver therapeutics are discussed. We move on to siRNA in particular, and why it would be advantageous as a therapy. Specific to siRNA delivery are some challenges, such as nuclease degradation, quick clearance from circulation, needing to enter cells, and getting to the cytosol. We propose the development of a nanoparticle delivery system to tackle these challenges so that siRNA can be effective.

Chapter 2 of this thesis discusses the synthesis and analysis of a cationic mucic acid polymer (cMAP) which condenses siRNA to form a nanoparticle. Various methods to add polyethylene glycol (PEG) for stabilizing the nanoparticle in physiologic solutions, including using a boronic acid binding to diols on mucic acid, forming a copolymer of cMAP with PEG, and creating a triblock with mPEG on both ends of cMAP. The goal of these various pegylation strategies was to increase the circulation time of the siRNA nanoparticle in the bloodstream to allow more of the nanoparticle to reach tumor tissue by the enhanced permeation and retention effect. We found that the triblock mPEG-cMAP-PEGm polymer condensed siRNA to form very stable 30-40 nm particles that circulated for the longest time – almost 10% of the formulation remained in the bloodstream of mice 1 h after intravenous injection.

Chapter 3 explores the use of an antibody as a targeting agent for nanoparticles. Some antibodies of the IgG1 subtype are able to recruit natural killer cells that effect antibody dependent cellular cytotoxicity (ADCC) to kill the targeted cell to which the antibody is bound. There is evidence that the ADCC effect remains in antibody-drug conjugates, so we wanted to know whether the ADCC effect is preserved when the antibody is bound to a nanoparticle, which is a much larger and complex entity. We utilized antibodies against epidermal growth factor receptor with similar binding and pharmacokinetics, cetuximab and panitumumab, which differ in that cetuximab is an IgG1 and panitumumab is an IgG2 (which does not cause ADCC). Although a natural killer cell culture model showed that gold nanoparticles with a full antibody targeting agent can elicit target cell lysis, we found that this effect was not preserved in vivo. Whether this is due to the antibody not being accessible to immune cells or whether the natural killer cells are inactivated in a tumor xenograft remains unknown. It is possible that using a full antibody still has value if there are immune functions which are altered in a complex in vivo environment that are intact in an in vitro system, so the value of using a full antibody as a targeting agent versus using an antibody fragment or a protein such as transferrin is still open to further exploration.

In chapter 4, nanoparticle targeting and endosomal escape are further discussed with respect to the cMAP nanoparticle system. A diboronic acid entity, which gives an order of magnitude greater binding (than boronic acid) to cMAP due to the vicinal diols in mucic acid, was synthesized, attached to 5kD or 10kD PEG, and conjugated to either transferrin or cetuximab. A histidine was incorporated into the triblock polymer between cMAP and the PEG blocks to allow for siRNA endosomal escape. Nanoparticle size remained 30-40 nm with a slightly negative ca. -3 mV zeta potential with the triblock polymer containing histidine and when targeting agents were added. Greater mRNA knockdown was seen with the endosomal escape mechanism than without. The nanoparticle formulations were able to knock down the targeted mRNA in vitro. Mixed effects suggesting function were seen in vivo.

Chapter 5 summarizes the project and provides an outlook on siRNA delivery as well as targeted combination therapies for the future of personalized medicine in cancer treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Excessive apoptosis induces unwanted cell death and promotes pathological conditions. Drug discovery efforts aimed at decreasing apoptotic damage initially targeted the inhibition of effector caspases. Although such inhibitors were effective, safety problems led to slow pharmacological development. Therefore, apoptosis inhibition is still considered an unmet medical need. Methodology and Principal Findings: The interaction between Apaf-1 and the inhibitors was confirmed by NMR. Target specificity was evaluated in cellular models by siRNa based approaches. Cell recovery was confirmed by MTT, clonogenicity and flow cytometry assays. The efficiency of the compounds as antiapoptotic agents was tested in cellular and in vivo models of protection upon cisplatin induced ototoxicity in a zebrafish model and from hypoxia and reperfusion kidney damage in a rat model of hot ischemia. Conclusions: Apaf-1 inhibitors decreased Cytc release and apoptosome-mediated activation of procaspase-9 preventing cell and tissue damage in ex vivo experiments and in vivo animal models of apoptotic damage. Our results provide evidence that Apaf-1 pharmacological inhibition has therapeutic potential for the treatment of apoptosis-related diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrolysis is the most mature form of hydrogen production. Unfortunately, water electrolysis has not yet achieved the efficiency and the cost levels required for any practical application. In order to enhance the current density, modification of the electrolyte and the electrode morphology are the most popular approaches. Recently there have been numerous reports on how to improve the efficiency of hydrogen production by water splitting [1-3]. On the electrode side, the use of non-platinum high efficiency electrode materials for water splitting will provide a promising future for the hydrogen economy. An ideal electrode for water electrolysis should have good permeability to water and gas. It should also offer good electrical properties with a long life. A porous graphite plate, when coated with titania, for example, is known to provide a simple and economical electrode for water electrolysis [4]. © 2010 IEEE.