955 resultados para Plasticity, Multiscale analysis
Resumo:
Leaf and wood plasticity are key elements in the survival of widely distributed plant species. Little is known, however, about variation in stomatal distribution in the leaf epidermis and its correlation with the dimensions of conducting cells in wood. This study aimed at testing the hypothesis that Podocarpus lambertii, a conifer tree, possesses a well-defined pattern of stomatal distribution, and that this pattern can vary together with the dimensions of stem tracheids as a possible strategy to survive in climatically different sites. Leaves and wood were sampled from trees growing in a cold, wet site in south-eastern Brazil and in a warm, dry site in north-eastern Brazil. Stomata were thoroughly mapped in leaves from each study site to determine a spatial sampling strategy. Stomatal density, stomatal index and guard cell length were then sampled in three regions of the leaf: near the midrib, near the leaf margin and in between the two. This sampling strategy was used to test for a pattern and its possible variation between study sites. Wood and stomata data were analysed together via principal component analysis. The following distribution pattern was found in the south-eastern leaves: the stomatal index was up to 25 higher in the central leaf region, between the midrib and the leaf margin, than in the adjacent regions. The inverse pattern was found in the north-eastern leaves, in which the stomatal index was 10 higher near the midrib and the leaf margin. This change in pattern was accompanied by smaller tracheid lumen diameter and length. Podocarpus lambertii individuals in sites with higher temperature and lower water availability jointly regulate stomatal distribution in leaves and tracheid dimensions in wood. The observed stomatal distribution pattern and variation appear to be closely related to the placement of conducting tissue in the mesophyll.
Resumo:
This work proposes the development and study of a novel technique lot the generation of fractal descriptors used in texture analysis. The novel descriptors are obtained from a multiscale transform applied to the Fourier technique of fractal dimension calculus. The power spectrum of the Fourier transform of the image is plotted against the frequency in a log-log scale and a multiscale transform is applied to this curve. The obtained values are taken as the fractal descriptors of the image. The validation of the proposal is performed by the use of the descriptors for the classification of a dataset of texture images whose real classes are previously known. The classification precision is compared to other fractal descriptors known in the literature. The results confirm the efficiency of the proposed method. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The present work shows a novel fractal dimension method for shape analysis. The proposed technique extracts descriptors from a shape by applying a multi-scale approach to the calculus of the fractal dimension. The fractal dimension is estimated by applying the curvature scale-space technique to the original shape. By applying a multi-scale transform to the calculus, we obtain a set of descriptors which is capable of describing the shape under investigation with high precision. We validate the computed descriptors in a classification process. The results demonstrate that the novel technique provides highly reliable descriptors, confirming the efficiency of the proposed method. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757226]
Resumo:
The genus Codium comprises c. 125 species widely distributed in marine coastal environments throughout the world. Due to morphological plasticity, the taxonomic delimitation of Codium species can be difficult. Sequences of the first exon of the large subunit of RUBISCO (rbcL) have been used in the molecular delimitation of species and for phylogenetic purposes. In the present study, we complement previous morphological work on Brazilian Codium species with molecular systematics. Based on the partial rbcL sequences, seven species are recognized along the Brazilian coast: C. decorticatum, C. intertextum, C. isthmocladum, C. profundum, C. spongiosum, C. taylorii and the new species Codium pernambucensis. Ten unique sequences were obtained among the samples examined, which we used in combination with previously published sequences to infer molecular phylogenies using various methods. The resulting trees showed three principal monophyletic groupings: Clade A with species having a prostrate habit, not branched, and mostly with small, grouped utricles; Clade B primarily consisting of upright species with cylindrical branches and large individual utricles; and Clade C composed of upright species with cylindrical branches that are slightly flattened, and have intermediate-sized individual utricles. The Brazilian species grouped with morphologically similar taxa from other geographic localities, and are present in all three main clades. A new sprawling species, Codium pernambucensis is described based on morphology and molecular analyses.
Resumo:
Fractal theory presents a large number of applications to image and signal analysis. Although the fractal dimension can be used as an image object descriptor, a multiscale approach, such as multiscale fractal dimension (MFD), increases the amount of information extracted from an object. MFD provides a curve which describes object complexity along the scale. However, this curve presents much redundant information, which could be discarded without loss in performance. Thus, it is necessary the use of a descriptor technique to analyze this curve and also to reduce the dimensionality of these data by selecting its meaningful descriptors. This paper shows a comparative study among different techniques for MFD descriptors generation. It compares the use of well-known and state-of-the-art descriptors, such as Fourier, Wavelet, Polynomial Approximation (PA), Functional Data Analysis (FDA), Principal Component Analysis (PCA), Symbolic Aggregate Approximation (SAX), kernel PCA, Independent Component Analysis (ICA), geometrical and statistical features. The descriptors are evaluated in a classification experiment using Linear Discriminant Analysis over the descriptors computed from MFD curves from two data sets: generic shapes and rotated fish contours. Results indicate that PCA, FDA, PA and Wavelet Approximation provide the best MFD descriptors for recognition and classification tasks. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This work proposes the application of fractal descriptors to the analysis of nanoscale materials under different experimental conditions. We obtain descriptors for images from the sample applying a multiscale transform to the calculation of fractal dimension of a surface map of such image. Particularly, we have used the Bouligand-Minkowski fractal dimension. We applied these descriptors to discriminate between two titanium oxide films prepared under different experimental conditions. Results demonstrate the discrimination power of proposed descriptors in such kind of application.
Resumo:
Biological processes are very complex mechanisms, most of them being accompanied by or manifested as signals that reflect their essential characteristics and qualities. The development of diagnostic techniques based on signal and image acquisition from the human body is commonly retained as one of the propelling factors in the advancements in medicine and biosciences recorded in the recent past. It is a fact that the instruments used for biological signal and image recording, like any other acquisition system, are affected by non-idealities which, by different degrees, negatively impact on the accuracy of the recording. This work discusses how it is possible to attenuate, and ideally to remove, these effects, with a particular attention toward ultrasound imaging and extracellular recordings. Original algorithms developed during the Ph.D. research activity will be examined and compared to ones in literature tackling the same problems; results will be drawn on the base of comparative tests on both synthetic and in-vivo acquisitions, evaluating standard metrics in the respective field of application. All the developed algorithms share an adaptive approach to signal analysis, meaning that their behavior is not dependent only on designer choices, but driven by input signal characteristics too. Performance comparisons following the state of the art concerning image quality assessment, contrast gain estimation and resolution gain quantification as well as visual inspection highlighted very good results featured by the proposed ultrasound image deconvolution and restoring algorithms: axial resolution up to 5 times better than algorithms in literature are possible. Concerning extracellular recordings, the results of the proposed denoising technique compared to other signal processing algorithms pointed out an improvement of the state of the art of almost 4 dB.
Resumo:
The work for the present thesis started in California, during my semester as an exchange student overseas. California is known worldwide for its seismicity and its effort in the earthquake engineering research field. For this reason, I immediately found interesting the Structural Dynamics Professor, Maria Q. Feng's proposal, to work on a pushover analysis of the existing Jamboree Road Overcrossing bridge. Concrete is a popular building material in California, and for the most part, it serves its functions well. However, concrete is inherently brittle and performs poorly during earthquakes if not reinforced properly. The San Fernando Earthquake of 1971 dramatically demonstrated this characteristic. Shortly thereafter, code writers revised the design provisions for new concrete buildings so to provide adequate ductility to resist strong ground shaking. There remain, nonetheless, millions of square feet of non-ductile concrete buildings in California. The purpose of this work is to perform a Pushover Analysis and compare the results with those of a Nonlinear Time-History Analysis of an existing bridge, located in Southern California. The analyses have been executed through the software OpenSees, the Open System for Earthquake Engineering Simulation. The bridge Jamboree Road Overcrossing is classified as a Standard Ordinary Bridge. In fact, the JRO is a typical three-span continuous cast-in-place prestressed post-tension box-girder. The total length of the bridge is 366 ft., and the height of the two bents are respectively 26,41 ft. and 28,41 ft.. Both the Pushover Analysis and the Nonlinear Time-History Analysis require the use of a model that takes into account for the nonlinearities of the system. In fact, in order to execute nonlinear analyses of highway bridges it is essential to incorporate an accurate model of the material behavior. It has been observed that, after the occurrence of destructive earthquakes, one of the most damaged elements on highway bridges is a column. To evaluate the performance of bridge columns during seismic events an adequate model of the column must be incorporated. Part of the work of the present thesis is, in fact, dedicated to the modeling of bents. Different types of nonlinear element have been studied and modeled, with emphasis on the plasticity zone length determination and location. Furthermore, different models for concrete and steel materials have been considered, and the selection of the parameters that define the constitutive laws of the different materials have been accurate. The work is structured into four chapters, to follow a brief overview of the content. The first chapter introduces the concepts related to capacity design, as the actual philosophy of seismic design. Furthermore, nonlinear analyses both static, pushover, and dynamic, time-history, are presented. The final paragraph concludes with a short description on how to determine the seismic demand at a specific site, according to the latest design criteria in California. The second chapter deals with the formulation of force-based finite elements and the issues regarding the objectivity of the response in nonlinear field. Both concentrated and distributed plasticity elements are discussed into detail. The third chapter presents the existing structure, the software used OpenSees, and the modeling assumptions and issues. The creation of the nonlinear model represents a central part in this work. Nonlinear material constitutive laws, for concrete and reinforcing steel, are discussed into detail; as well as the different scenarios employed in the columns modeling. Finally, the results of the pushover analysis are presented in chapter four. Capacity curves are examined for the different model scenarios used, and failure modes of concrete and steel are discussed. Capacity curve is converted into capacity spectrum and intersected with the design spectrum. In the last paragraph, the results of nonlinear time-history analyses are compared to those of pushover analysis.
Resumo:
Animal neocentromeres are defined as ectopic centromeres that have formed in non-centromeric locations and avoid some of the features, like the DNA satellite sequence, that normally characterize canonical centromeres. Despite this, they are stable functional centromeres inherited through generations. The only existence of neocentromeres provide convincing evidence that centromere specification is determined by epigenetic rather than sequence-specific mechanisms. For all this reasons, we used them as simplified models to investigate the molecular mechanisms that underlay the formation and the maintenance of functional centromeres. We collected human cell lines carrying neocentromeres in different positions. To investigate the region involved in the process at the DNA sequence level we applied a recent technology that integrates Chromatin Immuno-Precipitation and DNA microarrays (ChIP-on-chip) using rabbit polyclonal antibodies directed against CENP-A or CENP-C human centromeric proteins. These DNA binding-proteins are required for kinetochore function and are exclusively targeted to functional centromeres. Thus, the immunoprecipitation of DNA bound by these proteins allows the isolation of centromeric sequences, including those of the neocentromeres. Neocentromeres arise even in protein-coding genes region. We further analyzed if the increased scaffold attachment sites and the corresponding tighter chromatin of the region involved in the neocentromerization process still were permissive or not to transcription of within encoded genes. Centromere repositioning is a phenomenon in which a neocentromere arisen without altering the gene order, followed by the inactivation of the canonical centromere, becomes fixed in population. It is a process of chromosome rearrangement fundamental in evolution, at the bases of speciation. The repeat-free region where the neocentromere initially forms, progressively acquires extended arrays of satellite tandem repeats that may contribute to its functional stability. In this view our attention focalized to the repositioned horse ECA11 centromere. ChIP-on-chip analysis was used to define the region involved and SNPs studies, mapping within the region involved into neocentromerization, were carried on. We have been able to describe the structural polymorphism of the chromosome 11 centromeric domain of Caballus population. That polymorphism was seen even between homologues chromosome of the same cells. That discovery was the first described ever. Genomic plasticity had a fundamental role in evolution. Centromeres are not static packaged region of genomes. The key question that fascinates biologists is to understand how that centromere plasticity could be combined to the stability and maintenance of centromeric function. Starting from the epigenetic point of view that underlies centromere formation, we decided to analyze the RNA content of centromeric chromatin. RNA, as well as secondary chemically modifications that involve both histones and DNA, represents a good candidate to guide somehow the centromere formation and maintenance. Many observations suggest that transcription of centromeric DNA or of other non-coding RNAs could affect centromere formation. To date has been no thorough investigation addressing the identity of the chromatin-associated RNAs (CARs) on a global scale. This prompted us to develop techniques to identify CARs in a genome-wide approach using high-throughput genomic platforms. The future goal of this study will be to focalize the attention on what strictly happens specifically inside centromere chromatin.
Resumo:
The aim of this study was to develop a model capable to capture the different contributions which characterize the nonlinear behaviour of reinforced concrete structures. In particular, especially for non slender structures, the contribution to the nonlinear deformation due to bending may be not sufficient to determine the structural response. Two different models characterized by a fibre beam-column element are here proposed. These models can reproduce the flexure-shear interaction in the nonlinear range, with the purpose to improve the analysis in shear-critical structures. The first element discussed is based on flexibility formulation which is associated with the Modified Compression Field Theory as material constitutive law. The other model described in this thesis is based on a three-field variational formulation which is associated with a 3D generalized plastic-damage model as constitutive relationship. The first model proposed in this thesis was developed trying to combine a fibre beamcolumn element based on the flexibility formulation with the MCFT theory as constitutive relationship. The flexibility formulation, in fact, seems to be particularly effective for analysis in the nonlinear field. Just the coupling between the fibre element to model the structure and the shear panel to model the individual fibres allows to describe the nonlinear response associated to flexure and shear, and especially their interaction in the nonlinear field. The model was implemented in an original matlab® computer code, for describing the response of generic structures. The simulations carried out allowed to verify the field of working of the model. Comparisons with available experimental results related to reinforced concrete shears wall were performed in order to validate the model. These results are characterized by the peculiarity of distinguishing the different contributions due to flexure and shear separately. The presented simulations were carried out, in particular, for monotonic loading. The model was tested also through numerical comparisons with other computer programs. Finally it was applied for performing a numerical study on the influence of the nonlinear shear response for non slender reinforced concrete (RC) members. Another approach to the problem has been studied during a period of research at the University of California Berkeley. The beam formulation follows the assumptions of the Timoshenko shear beam theory for the displacement field, and uses a three-field variational formulation in the derivation of the element response. A generalized plasticity model is implemented for structural steel and a 3D plastic-damage model is used for the simulation of concrete. The transverse normal stress is used to satisfy the transverse equilibrium equations of at each control section, this criterion is also used for the condensation of degrees of freedom from the 3D constitutive material to a beam element. In this thesis is presented the beam formulation and the constitutive relationships, different analysis and comparisons are still carrying out between the two model presented.
Resumo:
Training can change the functional and structural organization of the brain, and animal models demonstrate that the hippocampus formation is particularly susceptible to training-related neuroplasticity. In humans, however, direct evidence for functional plasticity of the adult hippocampus induced by training is still missing. Here, we used musicians' brains as a model to test for plastic capabilities of the adult human hippocampus. By using functional magnetic resonance imaging optimized for the investigation of auditory processing, we examined brain responses induced by temporal novelty in otherwise isochronous sound patterns in musicians and musical laypersons, since the hippocampus has been suggested previously to be crucially involved in various forms of novelty detection. In the first cross-sectional experiment, we identified enhanced neural responses to temporal novelty in the anterior left hippocampus of professional musicians, pointing to expertise-related differences in hippocampal processing. In the second experiment, we evaluated neural responses to acoustic temporal novelty in a longitudinal approach to disentangle training-related changes from predispositional factors. For this purpose, we examined an independent sample of music academy students before and after two semesters of intensive aural skills training. After this training period, hippocampal responses to temporal novelty in sounds were enhanced in musical students, and statistical interaction analysis of brain activity changes over time suggests training rather than predisposition effects. Thus, our results provide direct evidence for functional changes of the adult hippocampus in humans related to musical training.
Resumo:
Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape changes. Applying the same algorithms used in brain imaging to orthopedic images might not be optimal due to the difference in the underlying prior on the inter-subject deformations. In particular, using an un-informed deformation prior often leads to local minima far from the expected solution. To improve robustness and promote anatomically meaningful deformations, we propose a locally affine and geometry-aware registration algorithm that automatically adapts to the data. We build upon the log-domain demons algorithm and introduce a new type of OBBTree-based regularization in the registration with a natural multiscale structure. The regularization model is composed of a hierarchy of locally affine transformations via their logarithms. Experiments on mandibles show improved accuracy and robustness when used to initialize the demons, and even similar performance by direct comparison to the demons, with a significantly lower degree of freedom. This closes the gap between polyaffine and non-rigid registration and opens new ways to statistically analyze the registration results.
Resumo:
Background Heterochromatin protein 1 (HP1) family proteins have a well-characterized role in heterochromatin packaging and gene regulation. Their function in organismal development, however, is less well understood. Here we used genome-wide expression profiling to assess novel functions of the Caenorhabditis elegans HP1 homolog HPL-2 at specific developmental stages. Results We show that HPL-2 regulates the expression of germline genes, extracellular matrix components and genes involved in lipid metabolism. Comparison of our expression data with HPL-2 ChIP-on-chip profiles reveals that a significant number of genes up- and down-regulated in the absence of HPL-2 are bound by HPL-2. Germline genes are specifically up-regulated in hpl-2 mutants, consistent with the function of HPL-2 as a repressor of ectopic germ cell fate. In addition, microarray results and phenotypic analysis suggest that HPL-2 regulates the dauer developmental decision, a striking example of phenotypic plasticity in which environmental conditions determine developmental fate. HPL-2 acts in dauer at least partly through modulation of daf-2/IIS and TGF-β signaling pathways, major determinants of the dauer program. hpl-2 mutants also show increased longevity and altered lipid metabolism, hallmarks of the long-lived, stress resistant dauers. Conclusions Our results suggest that the worm HP1 homologue HPL-2 may coordinately regulate dauer diapause, longevity and lipid metabolism, three processes dependent on developmental input and environmental conditions. Our findings are of general interest as a paradigm of how chromatin factors can both stabilize development by buffering environmental variation, and guide the organism through remodeling events that require plasticity of cell fate regulation.
Resumo:
The granule cells of the dentate gyrus give rise to thin unmyelinated axons, the mossy fibers. They form giant presynaptic boutons impinging on large complex spines on the proximal dendritic portions of hilar mossy cells and CA3 pyramidal neurons. While these anatomical characteristics have been known for some time, it remained unclear whether functional changes at mossy fiber synapses such as long-term potentiation (LTP) are associated with structural changes. Since subtle structural changes may escape a fine-structural analysis when the tissue is fixed by using aldehydes and is dehydrated in ethanol, rapid high-pressure freezing (HPF) of the tissue was applied. Slice cultures of hippocampus were prepared and incubated in vitro for 2 weeks. Then, chemical LTP (cLTP) was induced by the application of 25 mM tetraethylammonium (TEA) for 10 min. Whole-cell patch-clamp recordings from CA3 pyramidal neurons revealed a highly significant potentiation of mossy fiber synapses when compared to control conditions before the application of TEA. Next, the slice cultures were subjected to HPF, cryosubstitution, and embedding in Epon for a fine-structural analysis. When compared to control tissue, we noticed a significant decrease of synaptic vesicles in mossy fiber boutons and a concomitant increase in the length of the presynaptic membrane. On the postsynaptic side, we observed the formation of small, finger-like protrusions, emanating from the large complex spines. These short protrusions gave rise to active zones that were shorter than those normally found on the thorny excrescences. However, the total number of active zones was significantly increased. Of note, none of these cLTP-induced structural changes was observed in slice cultures from Munc13-1 deficient mouse mutants showing severely impaired vesicle priming and docking. In conclusion, application of HPF allowed us to monitor cLTP-induced structural reorganization of mossy fiber synapses.