813 resultados para Photovoltaic power generation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fact that most of the large scale solar PV plants are built in arid and semi-arid areas where land availability and solar radiation is high, it is expected the performance of the PV plants in such locations will be affected significantly due to high cell temperature as well as due to soiling. Therefore, it is essential to study how the different PV module technologies will perform in such geographical locations to ensure a consistent and reliable power delivery over the lifetime of the PV power plants. As soiling is strongly dependent on the climatic conditions of a particular location a test station, consisted of about 24 PV modules and a well-equipped weather station, was built within the fences of Scatec’s 75 MW Kalkbult solar PV plant in South Africa. This study was performed to a better understand the effect of soiling by comparing the relative power generation by the cleaned modules to the un-cleaned modules. Such knowledge can enable more quantitative evaluations of the cleaning strategies that are going to be implemented in bigger solar PV power plants. The data collected and recorded from the test station has been analyzed at IFE, Norway using a MatLab script written for this thesis project. This thesis work has been done at IFE, Norway in collaboration with Stellenbosch University in South Africa and Scatec Solar a Norwegian independent power producer company. Generally for the polycrystalline modules it is found that the average temperature corrected efficiency during the period of the experiment has been 15.00±0.08 % and for the thin film-CdTe with ARC is 11.52% and for the thin film without ARC is about 11.13% with standard uncertainty of ±0.01 %. Besides, by comparing the initial relative average efficiency of the polycrystalline-Si modules when all the modules have been cleaned for the first time and the final relative efficiency; after the last cleaning schedule which is when all the reference modules E, F, G, and H have been cleaned for the last time it is found that poly3 performs 2 % and 3 % better than poly1 and poly16 respectively, poly13 performs 1 % better than poly15 as well as poly5 and poly12 performs 1 % and 2 % better than poly10 respectively. Besides, poly5 and poly12 performs a 9 % and 11 % better than poly7. Furthermore, there is no change in performance between poly6 and poly9 as well as poly4 and poly15. However, the increase in performance of poly3 to poly1, poly13 to poly15 as well as poly5 and poly12 to poly10 is insignificant. In addition, it is found that TF22 perform 7% better than the reference un-cleaned module TF24 and similarly; TF21 performs 7% higher than TF23. Furthermore, modules with ARC glass (TF17, TF18, TF19, and TF20) shows that cleaning the modules with only distilled water (TF19) or dry-cleaned after cleaned with distilled water(TF20) decreases the performance of the modules by 5 % and 4 % comparing to its respective reference uncleanedmodules TF17 and TF18 respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the problem of coordinated trading of wind and photovoltaic systems in order to find the optimal bid to submit in a pool-based electricity market. The coordination of wind and photovoltaic systems presents uncertainties not only due to electricity market prices, but also with wind and photovoltaic power forecast. Electricity markets are characterized by financial penalties in case of deficit or excess of generation. So, the aim o this work is to reduce these financial penalties and maximize the expected profit of the power producer. The problem is formulated as a stochastic linear programming problem. The proposed approach is validated with real data of pool-based electricity market of Iberian Peninsula.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes control methods for proper load sharing between parallel converters connected in a microgrid and supplied by distributed generators (DGs). It is assumed that the microgrid spans a large area and it supplies loads in both in grid connected and islanded modes. A control strategy is proposed to improve power quality and proper load sharing in both islanded and grid connected modes. It is assumed that each of the DGs has a local load connected to it which can be unbalanced and/or nonlinear. The DGs compensate the effects of unbalance and nonlinearity of the local loads. Common loads are also connected to the microgrid, which are supplied by the utility grid under normal conditions. However during islanding, each of the DGs supplies its local load and shares the common load through droop characteristics. Both impedance and motor loads are considered to verify the system response. The efficacy of the controller has been validated through simulation for various operating conditions using PSCAD. It has been found through simulation that the total Harmonic Distortion (THD) of the of the microgrid voltage is about 10% and the negative and zero sequence component are around 20% of the positive sequence component before compensation. After compensation, the THD remain below 0.5%, whereas, negative and zero sequence components of the voltages remain below 0.02% of the positive sequence component.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The analysis of investment in the electric power has been the subject of intensive research for many years. The efficient generation and distribution of electrical energy is a difficult task involving the operation of a complex network of facilities, often located over very large geographical regions. Electric power utilities have made use of an enormous range of mathematical models. Some models address time spans which last for a fraction of a second, such as those that deal with lightning strikes on transmission lines while at the other end of the scale there are models which address time horizons consisting of ten or twenty years; these usually involve long range planning issues. This thesis addresses the optimal long term capacity expansion of an interconnected power system. The aim of this study has been to derive a new, long term planning model which recognises the regional differences which exist for energy demand and which are present in the construction and operation of power plant and transmission line equipment. Perhaps the most innovative feature of the new model is the direct inclusion of regional energy demand curves in the nonlinear form. This results in a nonlinear capacity expansion model. After review of the relevant literature, the thesis first develops a model for the optimal operation of a power grid. This model directly incorporates regional demand curves. The model is a nonlinear programming problem containing both integer and continuous variables. A solution algorithm is developed which is based upon a resource decomposition scheme that separates the integer variables from the continuous ones. The decompostion of the operating problem leads to an interactive scheme which employs a mixed integer programming problem, known as the master, to generate trial operating configurations. The optimum operating conditions of each trial configuration is found using a smooth nonlinear programming model. The dual vector recovered from this model is subsequently used by the master to generate the next trial configuration. The solution algorithm progresses until lower and upper bounds converge. A range of numerical experiments are conducted and these experiments are included in the discussion. Using the operating model as a basis, a regional capacity expansion model is then developed. It determines the type, location and capacity of additional power plants and transmission lines, which are required to meet predicted electicity demands. A generalised resource decompostion scheme, similar to that used to solve the operating problem, is employed. The solution algorithm is used to solve a range of test problems and the results of these numerical experiments are reported. Finally, the expansion problem is applied to the Queensland electricity grid in Australia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The analysis of investment in the electric power has been the subject of intensive research for many years. The efficient generation and distribution of electrical energy is a difficult task involving the operation of a complex network of facilities, often located over very large geographical regions. Electric power utilities have made use of an enormous range of mathematical models. Some models address time spans which last for a fraction of a second, such as those that deal with lightning strikes on transmission lines while at the other end of the scale there are models which address time horizons consisting of ten or twenty years; these usually involve long range planning issues. This thesis addresses the optimal long term capacity expansion of an interconnected power system. The aim of this study has been to derive a new, long term planning model which recognises the regional differences which exist for energy demand and which are present in the construction and operation of power plant and transmission line equipment. Perhaps the most innovative feature of the new model is the direct inclusion of regional energy demand curves in the nonlinear form. This results in a nonlinear capacity expansion model. After review of the relevant literature, the thesis first develops a model for the optimal operation of a power grid. This model directly incorporates regional demand curves. The model is a nonlinear programming problem containing both integer and continuous variables. A solution algorithm is developed which is based upon a resource decomposition scheme that separates the integer variables from the continuous ones. The decompostion of the operating problem leads to an interactive scheme which employs a mixed integer programming problem, known as the master, to generate trial operating configurations. The optimum operating conditions of each trial configuration is found using a smooth nonlinear programming model. The dual vector recovered from this model is subsequently used by the master to generate the next trial configuration. The solution algorithm progresses until lower and upper bounds converge. A range of numerical experiments are conducted and these experiments are included in the discussion. Using the operating model as a basis, a regional capacity expansion model is then developed. It determines the type, location and capacity of additional power plants and transmission lines, which are required to meet predicted electicity demands. A generalised resource decompostion scheme, similar to that used to solve the operating problem, is employed. The solution algorithm is used to solve a range of test problems and the results of these numerical experiments are reported. Finally, the expansion problem is applied to the Queensland electricity grid in Australia

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Voltage Unbalance (VU) is a power quality issue arising within the low voltage residential distribution networks due to the random location and rating of single-phase rooftop photovoltaic cells (PVs). In this paper, an analysis has been carried out to investigate how PV installations, their random location and power generation capacity can cause an increase in VU. Several efficient practical methods are discussed for VU reduction. Based on this analysis, it has been shown that the installation of a DSTATCOM can reduce VU. In this paper, the best possible location for DSTATCOM and its efficient control method to reduce VU will be presented. The results are verified through PSCAD/EMTDC and Monte Carlo simulations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the rapid increase in electrical energy demand, power generation in the form of distributed generation is becoming more important. However, the connections of distributed generators (DGs) to a distribution network or a microgrid can create several protection issues. The protection of these networks using protective devices based only on current is a challenging task due to the change in fault current levels and fault current direction. The isolation of a faulted segment from such networks will be difficult if converter interfaced DGs are connected as these DGs limit their output currents during the fault. Furthermore, if DG sources are intermittent, the current sensing protective relays are difficult to set since fault current changes with time depending on the availability of DG sources. The system restoration after a fault occurs is also a challenging protection issue in a converter interfaced DG connected distribution network or a microgrid. Usually, all the DGs will be disconnected immediately after a fault in the network. The safety of personnel and equipment of the distribution network, reclosing with DGs and arc extinction are the major reasons for these DG disconnections. In this thesis, an inverse time admittance (ITA) relay is proposed to protect a distribution network or a microgrid which has several converter interfaced DG connections. The ITA relay is capable of detecting faults and isolating a faulted segment from the network, allowing unfaulted segments to operate either in grid connected or islanded mode operations. The relay does not make the tripping decision based on only the fault current. It also uses the voltage at the relay location. Therefore, the ITA relay can be used effectively in a DG connected network in which fault current level is low or fault current level changes with time. Different case studies are considered to evaluate the performance of the ITA relays in comparison to some of the existing protection schemes. The relay performance is evaluated in different types of distribution networks: radial, the IEEE 34 node test feeder and a mesh network. The results are validated through PSCAD simulations and MATLAB calculations. Several experimental tests are carried out to validate the numerical results in a laboratory test feeder by implementing the ITA relay in LabVIEW. Furthermore, a novel control strategy based on fold back current control is proposed for a converter interfaced DG to overcome the problems associated with the system restoration. The control strategy enables the self extinction of arc if the fault is a temporary arc fault. This also helps in self system restoration if DG capacity is sufficient to supply the load. The coordination with reclosers without disconnecting the DGs from the network is discussed. This results in increased reliability in the network by reduction of customer outages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protection of a distribution network in the presence of distributed generators (DGs) using overcurrent relays is a challenging task due to the changes in fault current levels and reverse power flow. Specifically, in the presence of current limited converter interfaced DGs, overcurrent relays may fail to isolate the faulted section either in grid connected or islanded mode of operation. In this paper, a new inverse type relay is presented to protect a distribution network, which may have several DG connections. The new relay characteristic is designed based on the measured admittance of the protected line. The relay is capable of detecting faults under changing fault current levels. The relay performance is evaluated using PSCAD simulation and laboratory experiments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Demands for delivering high instantaneous power in a compressed form (pulse shape) have widely increased during recent decades. The flexible shapes with variable pulse specifications offered by pulsed power have made it a practical and effective supply method for an extensive range of applications. In particular, the release of basic subatomic particles (i.e. electron, proton and neutron) in an atom (ionization process) and the synthesizing of molecules to form ions or other molecules are among those reactions that necessitate large amount of instantaneous power. In addition to the decomposition process, there have recently been requests for pulsed power in other areas such as in the combination of molecules (i.e. fusion, material joining), gessoes radiations (i.e. electron beams, laser, and radar), explosions (i.e. concrete recycling), wastewater, exhausted gas, and material surface treatments. These pulses are widely employed in the silent discharge process in all types of materials (including gas, fluid and solid); in some cases, to form the plasma and consequently accelerate the associated process. Due to this fast growing demand for pulsed power in industrial and environmental applications, the exigency of having more efficient and flexible pulse modulators is now receiving greater consideration. Sensitive applications, such as plasma fusion and laser guns also require more precisely produced repetitive pulses with a higher quality. Many research studies are being conducted in different areas that need a flexible pulse modulator to vary pulse features to investigate the influence of these variations on the application. In addition, there is the need to prevent the waste of a considerable amount of energy caused by the arc phenomena that frequently occur after the plasma process. The control over power flow during the supply process is a critical skill that enables the pulse supply to halt the supply process at any stage. Different pulse modulators which utilise different accumulation techniques including Marx Generators (MG), Magnetic Pulse Compressors (MPC), Pulse Forming Networks (PFN) and Multistage Blumlein Lines (MBL) are currently employed to supply a wide range of applications. Gas/Magnetic switching technologies (such as spark gap and hydrogen thyratron) have conventionally been used as switching devices in pulse modulator structures because of their high voltage ratings and considerably low rising times. However, they also suffer from serious drawbacks such as, their low efficiency, reliability and repetition rate, and also their short life span. Being bulky, heavy and expensive are the other disadvantages associated with these devices. Recently developed solid-state switching technology is an appropriate substitution for these switching devices due to the benefits they bring to the pulse supplies. Besides being compact, efficient, reasonable and reliable, and having a long life span, their high frequency switching skill allows repetitive operation of pulsed power supply. The main concerns in using solid-state transistors are the voltage rating and the rising time of available switches that, in some cases, cannot satisfy the application’s requirements. However, there are several power electronics configurations and techniques that make solid-state utilisation feasible for high voltage pulse generation. Therefore, the design and development of novel methods and topologies with higher efficiency and flexibility for pulsed power generators have been considered as the main scope of this research work. This aim is pursued through several innovative proposals that can be classified under the following two principal objectives. • To innovate and develop novel solid-state based topologies for pulsed power generation • To improve available technologies that have the potential to accommodate solid-state technology by revising, reconfiguring and adjusting their structure and control algorithms. The quest to distinguish novel topologies for a proper pulsed power production was begun with a deep and through review of conventional pulse generators and useful power electronics topologies. As a result of this study, it appears that efficiency and flexibility are the most significant demands of plasma applications that have not been met by state-of-the-art methods. Many solid-state based configurations were considered and simulated in order to evaluate their potential to be utilised in the pulsed power area. Parts of this literature review are documented in Chapter 1 of this thesis. Current source topologies demonstrate valuable advantages in supplying the loads with capacitive characteristics such as plasma applications. To investigate the influence of switching transients associated with solid-state devices on rise time of pulses, simulation based studies have been undertaken. A variable current source is considered to pump different current levels to a capacitive load, and it was evident that dissimilar dv/dts are produced at the output. Thereby, transient effects on pulse rising time are denied regarding the evidence acquired from this examination. A detailed report of this study is given in Chapter 6 of this thesis. This study inspired the design of a solid-state based topology that take advantage of both current and voltage sources. A series of switch-resistor-capacitor units at the output splits the produced voltage to lower levels, so it can be shared by the switches. A smart but complicated switching strategy is also designed to discharge the residual energy after each supply cycle. To prevent reverse power flow and to reduce the complexity of the control algorithm in this system, the resistors in common paths of units are substituted with diode rectifiers (switch-diode-capacitor). This modification not only gives the feasibility of stopping the load supply process to the supplier at any stage (and consequently saving energy), but also enables the converter to operate in a two-stroke mode with asymmetrical capacitors. The components’ determination and exchanging energy calculations are accomplished with respect to application specifications and demands. Both topologies were simply modelled and simulation studies have been carried out with the simplified models. Experimental assessments were also executed on implemented hardware and the approaches verified the initial analysis. Reports on details of both converters are thoroughly discussed in Chapters 2 and 3 of the thesis. Conventional MGs have been recently modified to use solid-state transistors (i.e. Insulated gate bipolar transistors) instead of magnetic/gas switching devices. Resistive insulators previously used in their structures are substituted by diode rectifiers to adjust MGs for a proper voltage sharing. However, despite utilizing solid-state technology in MGs configurations, further design and control amendments can still be made to achieve an improved performance with fewer components. Considering a number of charging techniques, resonant phenomenon is adopted in a proposal to charge the capacitors. In addition to charging the capacitors at twice the input voltage, triggering switches at the moment at which the conducted current through switches is zero significantly reduces the switching losses. Another configuration is also introduced in this research for Marx topology based on commutation circuits that use a current source to charge the capacitors. According to this design, diode-capacitor units, each including two Marx stages, are connected in cascade through solid-state devices and aggregate the voltages across the capacitors to produce a high voltage pulse. The polarity of voltage across one capacitor in each unit is reversed in an intermediate mode by connecting the commutation circuit to the capacitor. The insulation of input side from load side is provided in this topology by disconnecting the load from the current source during the supply process. Furthermore, the number of required fast switching devices in both designs is reduced to half of the number used in a conventional MG; they are replaced with slower switches (such as Thyristors) that need simpler driving modules. In addition, the contributing switches in discharging paths are decreased to half; this decrease leads to a reduction in conduction losses. Associated models are simulated, and hardware tests are performed to verify the validity of proposed topologies. Chapters 4, 5 and 7 of the thesis present all relevant analysis and approaches according to these topologies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, prospect and feasibility of power generation by using speed breakers has been investigated. In this project a mechanism to generate power by converting the potential energy generated by a vehicle going up on a speed breaker into kinetic energy. This arrangement is made one rotation as soon as the vehicle moves over the speed breaker and has been increased using gears. After the production electricity, a storing unit has been used to hoard the generated electricity during the day and will be used during the night. Two prototypes have made using rack and pinion gear, spur gear, springs and generator .From which a considerable amount of energy is obtained. Nonetheless the cost of the prototype was inexpensive which proves the feasibility of this project and the idea can be applied on heavy traffic roads. Further investigation is being carried on to introduce the technology for practical approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Midwest Independent Transmission System Operator (MISO) has experienced significant amounts of wind power development within the last decade. The MISO footprint spans the majority of the upper Midwest region of the country, from the Dakotas to Indiana and as far east as Michigan. These areas have a rich wind energy resource. States in the MISO footprint have passed laws or set goals that require load serving entities to supply a portion of their load using renewable energy. In order to meet these requirements, significant investments are needed to build the transmission infrastructure necessary to deliver the power from these often remote wind energy resources to the load centers. This paper presents some of the transmission planning related work done at MISO which was largely influenced by current and future needs for increased wind power generation in the footprint. Specifically, topics covered are generator interconnection, long-term planning coordination, and cost-allocation for new transmission lines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

New residential scale photovoltaic (PV) arrays are commonly connected to the grid by a single dc-ac inverter connected to a series string of pv panels, or many small dc-ac inverters which connect one or two panels directly to the ac grid. This paper proposes an alternative topology of nonisolated per-panel dc-dc converters connected in series to create a high voltage string connected to a simplified dc-ac inverter. This offers the advantages of a "converter-per-panel" approach without the cost or efficiency penalties of individual dc-ac grid connected inverters. Buck, boost, buck-boost, and Cu´k converters are considered as possible dc-dc converters that can be cascaded. Matlab simulations are used to compare the efficiency of each topology as well as evaluating the benefits of increasing cost and complexity. The buck and then boost converters are shown to be the most efficient topologies for a given cost, with the buck best suited for long strings and the boost for short strings. While flexible in voltage ranges, buck-boost, and Cu´k converters are always at an efficiency or alternatively cost disadvantage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Grid connected photovoltaic (PV) inverters fall into three broad categories - central, string and module integrated converters (MICs). MICs offer many advantages in performance and flexibility, but are at a cost disadvantage. Two alternative novel approaches proposed by the author - cascaded dc-dc MICs and bypass dc-dc MICs - integrate a simple non-isolated intelligent dc-dc converter with each PV module to provide the advantages of dc-ac MICs at a lower cost. A suitable universal 150 W 5 A dc-dc converter design is presented based on two interleaved MOSFET half bridges. Testing shows zero voltage switching (ZVS) keeps losses under 1 W for bi-directional power flows up to 15 W between two adjacent 12 V PV modules for the bypass application, and efficiencies over 94% for most of the operational power range for the cascaded converter application. Based on the experimental results, potential optimizations to further reduce losses are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

New residential scale photovoltaic (PV) arrays are commonly connected to the grid by a single DC-AC inverter connected to a series string of PV modules, or many small DC-AC inverters which connect one or two modules directly to the AC grid. This paper shows that a "converter-per-module" approach offers many advantages including individual module maximum power point tracking, which gives great flexibility in module layout, replacement, and insensitivity to shading; better protection of PV sources, and redundancy in the case of source or converter failure; easier and safer installation and maintenance; and better data gathering. Simple nonisolated per-module DC-DC converters can be series connected to create a high voltage string connected to a simplified DC-AC inverter. These advantages are available without the cost or efficiency penalties of individual DC-AC grid connected inverters. Buck, boost, buck-boost and Cuk converters are possible cascadable converters. The boost converter is best if a significant step up is required, such as with a short string of 12 PV modules. A string of buck converters requires many more modules, but can always deliver any combination of module power. The buck converter is the most efficient topology for a given cost. While flexible in voltage ranges, buck-boost and Cuk converters are always at an efficiency or alternatively cost disadvantage

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.