857 resultados para Photovoltaic Solar Energy
Avaliação do desempenho hidro-energético de sistemas fotovoltaicos utilizados no bombeamento de água
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Since ancient times, it has been a huge challenge to all people around the world to manage to get their fresh water, keeping it clean and providing it to every human being, so that it can be used for their daily needs. This is especially true for small properties in the countryside and in isolated areas with low demographic density. Pumping the water in those regions is a solution that rationalizes its use in domestic chores, in animal rearing and in the irrigation systems of cultivated areas. Making feasible local, renewable and non-polluted energetic alternatives is the aim for those areas that are usually far away from the public electric network. Using photovoltaic solar energy is the alternative now proposed. For this objective was built a system with two monocrystalline panels, one pump, two water tanks, two level sensors and a solenoid valve to pump water, using a pump powered an array of monocrystalline solar panels. The main goal was to compare their rate of water flow and their energy consumption. The use of one data acquisition equipment allowed collecting meteorological, electrical and hydraulic values, and also serving for the control and activation of the pumping system. During four months in a row as from April 2009, arrangements with one or two panels were tested. Mathematics correlations and adjustment lines were used to interpret the behavior of obtained dataset. During the analyzed period the system followed the linear equations with great accuracy. The daily average amount of water pumped by the several tested arrays stayed between 1,100 and 2,500 liters, and that is enough to supply a small rural property. The pumping system with two panels effectively showed the major amount of water, but a system with one panel can be an economical solution until 1,500 liters on day. It did not characterize a direct relationship between power or quantity of photovoltaic panels and daily outflow of water pumping.
Resumo:
In order to diversify the global and national energy matrix and reduce harmful impacts on the environment caused by the emission of polluting gases into the atmosphere, the use of clean and renewable energy sources is presented as a good alternative. This work discusses the use of photovoltaic solar energy, a source that presents such characteristics. The photovoltaic system under study is the type distributed connected to the grid, in the residential segment. It is informed of its use in the global and national levels. They are also present their characteristics, electrical and electronic circuits that make up the equipment required for its operation and the design of a system to be installed in a residence
Resumo:
In order to diversify the global and national energy matrix and reduce harmful impacts on the environment caused by the emission of polluting gases into the atmosphere, the use of clean and renewable energy sources is presented as a good alternative. This work discusses the use of photovoltaic solar energy, a source that presents such characteristics. The photovoltaic system under study is the type distributed connected to the grid, in the residential segment. It is informed of its use in the global and national levels. They are also present their characteristics, electrical and electronic circuits that make up the equipment required for its operation and the design of a system to be installed in a residence
Resumo:
The main objective of this paper is to review the state of the art of residential PV systems in France and Belgium. This is done analyzing the operational data of 10650 PV systems (9657 located in France and 993 in Belgium). Three main questions are posed. How much energy do they produce? What level of performance is associated to their production? Which are the key parameters that most influence their quality? During the year 2010, the PV systems in France have produced a mean annual energy of 1163 kWh/kWp in France and 852 kWh/kWp in Belgium. As a whole, the orientation of PV generators causes energy productions to be some 7% inferior to optimally oriented PV systems. The mean Performance Ratio is 76% in France and 78% in Belgium, and the mean Performance Index is 85% in both countries. On average, the real power of the PV modules falls 4.9% below its corresponding nominal power announced on the manufacturer?s datasheet. A brief analysis by PV modules technology has lead to relevant observations about two technologies in particular. On the one hand, the PV systems equipped with Heterojunction with Intrinsic. Thin layer (HIT) modules show performances higher than average. On the other hand, the systems equipped with Copper Indium (di)Selenide (CIS) modules show a real power that is 16 % lower than their nominal value.
Resumo:
During the last 10 years the Spanish photovoltaic market has experienced one of the most important increases worldwide. The continuous raise on the price of the electricity in Spain, as in other European countries, USA and Japan, as well as the decrease of the cost of solar photovoltaic systems along this decade is opening a new way to reach grid parity point in some particular scenarios. A new Spanish legislation is being performed toward selfconsumption, and it is in this new context where the grid parity in a wide sense could be achieved. This work will study different cases in Spain, in order to determine whether grid parity would be possible along 2012. Keywords: grid parity, self-consumption, photovoltaic, net-metering
Resumo:
The dome-shaped Fresnel-Köhler concentrator is a novel optical design for photovoltaic applications. It is based on two previous successful CPV optical designs: the FK concentrator with a flat Fresnel lens and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. This optical concentrator will be able to achieve large concentration factors, high tolerance (i.e. acceptance angle) and high optical efficiency, three key issues when dealing with photovoltaic applications. Besides, its irradiance is distributed on the cell surface in a very even way. The concentrator has shown outstanding simulation results, achieving an effective concentration-acceptance product (CAP) value of 0.72, on-axis optical efficiency over 85% and good irradiance uniformity on the cell provided by Köhler integration. Furthermore, due to its high tolerance, we will present the dome-shaped Fresnel-Köhler concentrator as a cost-effective CPV optical design. All this makes this concentrator superior to other conventional competitors in the current market.
Resumo:
The implementation of photovoltaic solar energy based on silicon is being slowed down by the shortage of raw material. In this context, the use of thinner wafers arises as a solution reducing the amount of silicon in the photovoltaic modules. On the other hand, the manufacturing process with thinner wafers can become complicated with traditional tools. The high number of damaged wafers reduces the global yield. It’s known that edge and surface cracks and defects determine the mechanical strength of wafers. There are several ways of removing these defects e. g. subjecting wafers to a mechanical polishing or to a chemical etching. This paper shows a comparison between different surface treatments and their influence on the mechanical strength.
Resumo:
The objective of the present study is the estimation of the depth to which the wire sawing process causes damage to the wafer surfaces. Previous analyses were carried out by means of the four line bending test. The characteristic of this test implied that the failure could be due to surface cracks located in the central zone of the wafer or near the edges. In order to evaluate the influence of the edge or surface cracks a new study has been carried out using the ball/ring on ring test. Description and results of the tests are presented. The preliminary analysis of the failure stress using analytical methods confirms the expected results. A Finite Element model developed to get more information of the test results is also presented.
Resumo:
Nowadays CPV trends mostly based in lens parqueted flat modules, enable the separate design of the sun tracker. To enable this possibility a set of specifications is to be prescribed for the tracker design team, which take into account fundamental requisites such as the maximum service loads both permanent and variable, the sun tracking accuracy and the tracker structural stiffness required to maintain the CPV array acceptance angle loss below a certain threshold. In its first part this paper outlines the author’s approach to confront these issues. Next, a method is introduced to estimate the acceptance angle losses due to the tracker’s structural flexure, which in last instance relies in the computation of the minimum enclosing circle of a set of points in the plane. This method is also useful to simulate the drifts in the tracker’s pointing vector due to structural deformation as a function of the aperture orientation angle. Results of this method when applied to the design of a two axis CPV pedestal tracker are presented.
Resumo:
El objetivo principal del presente Proyecto Fin de Carrera es el de dotar a la Escuela Universitaria de Ingenieros Técnicos de Telecomunicación – Universidad Politécnica de Madrid (EUITT-UPM) de un banco de medida donde poder caracterizar los módulos fotovoltaicos en condiciones reales de operación. Es necesario comprobar el funcionamiento de los módulos para asegurarse de que está acorde a lo indicado en las especificaciones anunciadas por los fabricantes. A lo largo del texto daremos una introducción al concepto de energía solar fotovoltaica y una descripción de los sistemas tanto aislados como los conectados a la red eléctrica de distribución. Hablaremos sobre el fenómeno fotovoltaico y describiremos los módulos fotovoltaicos para ver las partes de las que está compuesto un módulo. Finalmente nos centraremos en el banco de ensayo y acabaremos explicando el caso práctico realizado en la EUITT. A través de la medida de la curva I-V del módulo fotovoltaico en condiciones reales de operación y la extrapolación de los resultados obtenidos a las Condiciones Estándar de Medida (CEM) comprobaremos lo que se ajustan los valores dados por los fabricantes de los módulos solares. ABSTRACT. The main aim of this project is to provide the EUITT-UPM a measure workbench to characterize photovoltaic (PV) modules in real test conditions (RTC). It is necessary to check the PV modules operations to assure that its characteristics are close to the ones given by the manufacturers. I will introduce the concept of photovoltaic solar energy and describe remote systems as well as network-connected systems. I will talk about the photovoltaic phenomenon and describe the PV modules in order to know the parts making up a module. Finally, I shall describe the measure workbench explaining the practical case carried out at the university. By measuring the I-V curve of PV modules in real test conditions and the later extrapolation of the results to the standard test conditions (STC), manufacturers’ data can be compared to the data obtained within this study.
Resumo:
This paper describes the preliminary results of an intercomparison of spectroradiometers for global (GNI) and direct normal incidence (DNI) irradiance in the visible (VIS) and near infrared (NIR) spectral regions together with an assessment of the impact these results may have on the calibration of triple-junction photovoltaic devices and on the relevant spectral mismatch calculation. The intercomparison was conducted by six European scientific laboratories and a Japanese industrial partner. Seven institutions and seven spectroradiometer systems, representing different technologies and manufacturers were involved, representing a good cross section of the todays available instrumentation for solar spectrum measurements.