974 resultados para Photoluminescence quenching


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eu3+-activated layered BiOCl phosphors were synthesized by the conventional solid-state method at relatively low temperature and shorter duration (400 degrees C for 1 h). All the samples were crystallized in the tetragonal structure with the space group P4/nmm (no. 129). Field emission scanning electron microscopy (FE-SEM) studies confirmed the plate-like morphology. Photoluminescence spectra exhibit characteristic luminescent D-5(0) -> F-7(J) (J = 0-4) intra-4f shell Eu3+ ion transitions. The electric dipole transition located at 620 nm (D-5(0) -> F-7(2)) was stronger than the magnetic dipole transition located at 594 nm (D-5(0) -> F-7(1)). The evaluated Commission International de l'Eclairage (CIE) color coordinates of Eu3+-activated BiOCl phosphors were close to the commercial Y2O3:Eu3+ and Y2O2S:Eu3+ red phosphors. Intensity parameters (Omega(2), Omega(4)) and various radiative properties such as transition probability (A(tot)), radiative lifetime (tau(rad)), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau(rad)) were calculated using the Judd-Ofelt theory. The experimental decay curves of the D-5(0) level in Eu3+-activated BiOCl have a single exponential profile. In comparison with other Eu3+ doped materials, Eu3+-activated BiOCl phosphors have a long lifetime (tau(exp)), low non-radiative relaxation rate (W-NR), high quantum efficiency (eta) and better optical gain (sigma(e) x tau(rad)). The determined radiative properties revealed the usefulness of Eu3+-activated BiOCl in developing red lasers as well as optical display devices. Further, these samples showed efficient photocatalytic activity for the degradation of rhodamine B (RhB) dye under visible light irradiation. These photocatalysts are useful for the removal of toxic and non-biodegradable organic pollutants in water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scheelite-type MWO4 (M = Ca, Sr, and Ba) nanophosphors were synthesized by the precipitation method. All compounds crystallized in the tetragonal structure with space group 141/a (No. 88). Scherrer's and TEM results revealed that the average crystallite size varies from 32 to 55 nm. FE-SEM illustrate the spherical (CaWO4), bouquet (SrWO4), and fish (BaWO4) like morphologies. PL spectra indicate the broad emission peak maximum at 436 (CaWO4), 440 (SrWO4), and 433 nm (BaWO4) under UV excitation. The calculated CIE color coordinates of MWO4 nanophosphors are close to the commercial BAM and National Television System Committee blue phosphor. The photocatalytic activities of MWO4 were investigated for the degradation of methylene blue dye under UV illumination. At pH 3, BaWO4 nanocatalyst showed 100% dye degradation within 60 min. The photocatalytic activity was in the decreasing order of BaWO4> CaWO4>SrWO4 under both neutral and acidic conditions. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stolzite polymorph of PbWO4 catalyst was prepared by the facile room temperature precipitation method. Structural parameters were refined by the Rietveld analysis using powder X-ray data. PbWO4 was crystallized in the scheelite-type tetragonal structure with space group I4(1)/a (No. 88). Field emission scanning electron microscopy revealed leaf like morphology. Photoluminescence spectra exhibit broad blue emission (425 nm) under the excitation of 356 nm. The photocatalytic degradation of Methylene blue, Rhodamine B and Methyl orange dyes were measured under visible illumination. The 100% dye degradation was observed for MB and RhB dyes within 60 and 105 min. The rate constant was found to be in the decreasing order of MB > RhB > MO which followed the 1st order kinetic mechanism. Therefore, PbWO4 can be a potential candidate for blue component in white LEDs and also acts as a catalyst for the treatment of toxic and non-biodegradable organic pollutants in water. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of Bi1-xEuxOX (X = F and Br; x = 0, 0.01, 0.03 and 0.05) phosphors were synthesized at relatively low temperature and short duration (500 degrees C, 1 h). Rietveld refinement results verified that all the compounds were crystallized in the tetragonal structure with space group P4/nmm (no. 129). Photoluminescence spectra exhibit characteristic luminescence D-5(0) -> F-7(J) (J = 0-4) intra-4f shell Eu3+ ion transitions. The magnetic dipole (D-5(0) -> F-7(1)) transition dominates the emission of BiOF:Eu3+, while the electric dipole (D-5(0) -> F-7(2)) peak was stronger in BiOBr:Eu3+ phosphors. The evaluated CIE color coordinates for Bi0.95Eu0.05OBr (0.632, 0.358) are close to the commercial Y2O3:Eu3+ (0.645, 0.347) and Y2O2S:Eu3+ (0.647, 0.343) red phosphors. Intensity parameters (Omega(2), Omega(4)) and various radiative properties such as transition rates (A), branching ratios (beta), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau) were calculated using the Judd-Ofelt theory. It was observed that BiOBr:Eu3+ phosphors have a long lifetime (tau) and better optical gain (sigma(e) x tau) as compared to reported Eu3+ doped materials. Furthermore, these compounds exhibit excellent photocatalytic activity for the degradation of rhodamine B dye under visible light irradiation. The determined radiative properties and photocatalytic results revealed that BiOBr:Eu3+ phosphors have potential applications in energy and environmental remedies, such as to develop red phosphors for white light-emitting diodes, red lasers and to remove toxic organic industrial effluents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the tunable photoluminescence characteristics of porous ZnO microsheets fabricated within 1-5 min of microwave irradiation in the presence of a capping agent such as citric acid, and mixture of citric acid with polyvinylpyrrolidone (PVP). The UV emission intensity reduces to 60% and visible emission increases tenfold when the molar concentration of citric acid is doubled. Further diminution of the intensity of UV emission (25%) is observed when PVP is mixed with citric acid. The addition of nitrogen donor ligands to the parent precursor leads to a red shift in the visible luminescence. The deep level emission covers the entire visible spectrum and gives an impression of white light emission from these ZnO samples. The detailed luminescence mechanism of our ZnO samples is described with the help of a band diagram constructed by using the theoretical models that describe the formation energy of the defect energy levels within the energy band structure. Oxygen vacancies play the key role in the variation of the green luminescence in the ZnO microsheets. Our research findings provide an insight that it is possible to retain the microstructure and simultaneously introduce defects into ZnO. The growth of the ZnO microsheets may be due to the self assembly of the fine sheets formed during the initial stage of nucleation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, a lot of interest has been centred on the optical properties of hexagonal boron nitride (h-BN), which has a similar lattice structure to graphene. Interestingly, h-BN has a wide bandgap and is biocompatible, so it has potential applications in multiphoton bioimaging, if it can exhibit large nonlinear optical (NLO) properties. However, extensive investigation into the NLO properties of h-BN have not been done so far. Here, NLO properties of 2D h-BN nanosheets (BNNS) are reported for the first time, using 1064-nm NIR laser radiation with a pulse duration of 10 ns using the Z-scan technique. The reverse saturable absorption occurs in aqueous colloidal solutions of BNNS with a very large two-photon absorption cross section (sigma(2PA)) of approximate to 57 x 10(-46) cm(4) s(-1) photon(-1). Also, by using UV-Vis absorption spectroscopy, the temperature coefficient of the bandgap (dE(g)/dT) of BNNS is determined to be 5.9 meV K-1. Further defect-induced photoluminescence emission in the UV region is obtained in the 283-303 K temperature range, under excitations of different wavelengths. The present report of large sigma(2PA) combined with stability and biocompatibility could open up new possibilities for the application of BNNS as a potential optical material for multiphoton bioimaging and advanced photonic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we report the synthesis of boron and nitrogen Co-doped carbon nanoparticles (BN-CNPs) by a hydrothermal method using sucrose, boric acid, and urea as the precursors. The BN-CNPs show excellent photoluminescence with a quantum yield of similar to 14.2% in aqueous solution and can be used as photoluminescent probes for selective and sensitive detection of picric acid (PA). PA quenches the photoluminescence signal remarkably, while other explosives cause a little quenching confirming the high selectivity of BN-CNPs. The sensitivity toward PA sensing is high at pH 7 and increases with temperature. The detection limit as well as the sensitivity are shown to improve by adding NaCl to the PA. The low detection limit can be as low as 10 nM at room temperature and pH 7, which indicates the BN-CNPs are superior as compared to other luminescent probes reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eu+3 was incorporated into the lattice of a lead-free ferroelectric Na1/2Bi1/2TiO3 (NBT) as per the nominal formula Na0.5Bi0.5-xEuxTiO3. This system was investigated with regard to the Eu+3 photoluminescence (PL) and structural behaviour as a function of composition and electric field. Electric field was found to irreversibly change the features in the PL spectra and also in the x-ray diffraction patterns below the critical composition x = 0.025. Detailed analysis revealed that below the critical composition, electric field irreversibly suppresses the structural heterogeneity inherent of the host matrix NBT and brings about a long range ferroelectric state with rhombohedral (R3c) distortion. It is shown that the structural disorder on the nano-scale opens a new channel for radiative transition which manifests as a new emission line branching off from the main D-5(0)-> F-7(0) line along with a concomitant change in the relative intensity of the other crystal field induced Stark lines with different J values. The study suggests that Eu+3 luminescence can be used to probe the relative degree of field induced structural ordering in relaxor ferroelectrics and also in high performance piezoelectric alloys where electric field couples very strongly with the lattice and structural degrees of freedom. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wafer/microcrystallites of oxidized Ge with holes/nanoholes synthesized by thermal oxidation strategy from Ge wafer/microcrystallites can convert one wavelength to another. Both oxidized Ge wafer and microcrystallites shows excitation- and power-dependent luminescence. Red-shift is observed as the excitation wavelength is increased, while blue-shift is observed as power density is increased. Over all, blue-green-yellow-orange luminescence is observed depending on the excitation wavelength and the morphology of oxidized Ge. The various defects level associated with germanium-oxygen vacancies in GeO2 and Ge/GeO2 interface are responsible for the excitation-dependent luminescence. Being a light-conversion material, oxidized Ge is expected to find potential applications in solid-state lighting, photovoltaic devices and photocatalysis. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report, for the first time, the photoluminescence properties of Eu3+-doped LiNa3P2O7 phosphor, synthesized by a facile solid-state reaction method in air atmosphere. The crystal structure and phase purity of the phosphors were analyzed by X-ray diffraction analysis. Orthorhombic structural morphology was identified by scanning electron microscopy. The phosphate groups in the phosphor were confirmed by Fourier transform infrared analysis. Bandgap of the phosphor was calculated from the diffuse reflectance spectra data using Kubelka-Munk function. Under 395-nm UV excitation, the phosphors show signs of emitting red color due to the D-5(0) -> F-7(2) transition. In accordance with Judd-Ofelt theory, spectroscopic parameters such as oscillator intensity parameter Omega(t) (t = 2), spontaneous emission probabilities, fluorescence branching ratios and radiative lifetimes were calculated and analyzed for the first time in this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MgO:Fe3+ (0.1-5 mol%) nanoparticles (NPs) were synthesized via eco-friendly, inexpensive and simple low temperature solution combustion route using Aloe vera gel as fuel. The final products were characterized by SEM, TEM and HRTEM. PXRD data and Rietveld analysis revealed the formation of cubic system. The influence of Fe3+ ion concentration on the structure morphology, UV absorption, PL emission and photocatalytic activity of MgO:Fe3+ NPs were investigated. The yellow emission with CIE chromaticity coordinates (0.44, 0.52) and average correlated color temperature value was found to be 3540 K which corresponds to warm light of NPs. The control of Fe3+. on MgO matrix influences the photocatalytic decolorization of methylene blue (MB) under UV light. The enhanced photocatalytic activity of MgO:Fe3+ (4 mol%) was attributed to dopant concentration, effective crystallite size, textural properties, decreased band gap and capability for reducing the electron hole pair recombination. Further, the trends of inhibitory effect in the presence of different radical scavengers were explored. These findings open up new avenues for the exploration of Fe-doped MgO in eco-friendly water applications and in the process of display devices. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence and photocatalytic properties of Eu-doped ZnO nanoparticles (NPs) were synthesized by facile phyto route. XPS results demonstrated the existence of Eu3+ as dopant into ZnO. Morphologies of the NPs were mainly dependent on Eu3+ and Aloe vera gel. Red shift of energy band gap was due to the creation of intermediate energy states of Eu3+ and oxygen vacancies in the band gap. PL emission of ZnO:Eu3+ (1-11 mol%, 8 ml and 7 mol%, 2-12 ml) exhibit characteristic peaks of D-5(0) -> F-7(2) transitions. From the Judd-Ofelt analysis, intensities of transitions between different.' levels dependent on the symmetry of the local environment of Eu3+ ions. CIE chromaticity co-ordinates confirm reddish emission of the phosphor. Further, NPs exhibit excellent photocatalytic activity for the degradation of Rhodamine B (94%) under Sunlight was attributed to crystallite size, band gap, morphology and oxygen vacancies. In addition, photocatalyst reusability studies were conducted and found that Eu-doped catalyst could be reused several times with negligible decrease in catalytic activity. The present work directs new possibilities to provide some new insights into the design of new phyto synthesized nanophosphors for display devices, photocatalysts with high activity for environmental clean-up and solar energy conversion. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naturally formed CdTe/CdS core/shell quantum dot (QD) structures in the presence of surface stabilizing agents have been synthesized by a hydrothermal method. Size and temperature dependent photoluminescence (PL) spectra have been investigated to understand the exciton-phonon interaction, and radiative and nonradiative relaxation of carriers in these QDs. The PL of these aqueous CdTe QDs (3.0-4.8 nm) has been studied in the temperature range 15-300 K. The strength of the exciton-LO-phonon coupling, as reflected in the Huang-Rhys parameter `S' is found to increase from 1.13 to 1.51 with the QD size varying from 4.8 to 3.0 nm. The PL linewidth (FWHM) increases with increase in temperature and is found to have a maximum in the case of QDs of 3.0 nm in size, where the exciton-acoustic phonon coupling coefficient is enhanced to 51 mu eV K-1, compared to the bulk value of 0.72 mu eV K-1. To understand the nonradiative processes, which affect the relaxation of carriers, the integrated PL intensity is observed as a function of temperature. The integrated PL intensity remains constant until 50 K for relatively large QDs (3.9-4.8 nm) beyond which a thermally activated process takes over. Below 150 K, a small activation energy, 45-19 meV, is found to be responsible for the quenching of the PL. Above 150 K, the thermal escape from the dot assisted by scattering with multiple longitudinal optical (LO) phonons is the main mechanism for the fast quenching of the PL. Besides this high temperature quenching, interestingly for relatively smaller size QDs (3.4-3.0 nm), the PL intensity enhances as the temperature increases up to 90-130 K, which is attributed to the emission of carriers from interface/trap states having an activation energy in the range of 6-13 meV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present experimental and theoretical results on monolayer colloidal cadmium selenide quantum dot films embedded with tiny gold nanoparticles. By varying the density of the embedded gold nanoparticles, we were able to engineer a plasmon-mediated crossover from emission quenching to enhancement regime at interparticle distances for which only quenching of emission is expected. This crossover and a nonmonotonic variation of photoluminescence intensity and decay rate, in experiments, is explained in terms of a model for plasmon-mediated collective emission of quantum emitters which points to the emergence of a new regime in plasmon-exciton interactions. The presented methodology to achieve enhancement in optical quantum efficiency for optimal doping of gold nanoparticles in such ultrathin high-density quantum dot films can be beneficial for new-generation displays and photodetectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of Eu3+ activated Ce0.5Al0.5O2-delta nanophosphors have been synthesized by the nitrate - citrate gel combustion method. All the compounds crystallized in the cubic fluorite CeO2 structure with space group Fm-3m (No. 225). FESEM revealed the flakes-like morphology. The average particle size was estimated from TEM studies and found to be in the range 15-25 nm. The values were in good agreement with the Scherer's method. In photoluminescence (PL) spectra, the D-5(0) -> F-7(2) (612 nm) transition dominates than other transitions which indicates that the Eu3+ ions occupy a site without inversion center. CIE chromaticity diagram confirmed that these nanophosphors can be useful in the fabrication of red component in white light emitting diodes (WLEDs).