985 resultados para Photoluminescence properties


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The self-assembled growth of vertically well-aligned ZnO nanorod arrays with uniform length and diameter on Si substrate has been demonstrated via thermal evaporation and vapor-phase transport. The structural, photoluminescence (PL), and field emission properties of the as-prepared nanorod arrays were investigated. The PL spectrum at 10 K shows a strong and sharp near-band gap emission (NBE) peak ( full width at half-maximum (FWHM) = 4.7 meV) and a weak neglectable deep-level emission (DL) peak (I-NBE/I-DL= 220), which implies its good crystallinity and high optical quality. The room-temperature NBE peak was deduced to the composition of free exciton and its first-order replicas emissions by temperature-dependent PL spectra. The field emission measurements indicate that, with a vacuum gap of 400 Am, the turn-on field and threshold field is as low as 2.3 and 4.2 V/mu m. The field enhancement factor beta and vacuum gap d follows a universal equation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using micro-photoluminescence technique, we observed a new photoluminescence peak about 0.348 eV above the bandgap of GaAs (E-0). By analyzing its optical characteristics, we assigned this peak to the nonequilibrium luminescence emission from the E-0 + Delta(0) bandgap in semi-insulated GaAs, which was further verified by Raman results. The observed polarization, excitation power dependence and temperature dependence of the photoluminescence spectra from the E-0 + Delta(0) energy level were very similar to those from the E-0 of GaAs. This mainly resulted from the common conduction band around Gamma(6) that was involved in the two optical transition processes, and indicated that the optical properties of bulk GaAs were mainly determined by the intrinsic properties of the conduction band. Our results demonstrated that the micro-photoluminescence technique is a powerful tool to investigate the high energy states above the fundamental bandgap in semiconductor materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

LaInO3:Eu3+ phosphors were prepared by a Pechini sol-gel process. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), diffuse reflectance, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the synthesized phosphors. XRD results reveal that the sample begins to crystallize at 600 degrees C and pure LaInO3 phase can be obtained at 800 degrees C. The crystallinity increases upon raising the annealing temperature. The FE-SEM images indicate that LaInO3:Eu3+ phosphors are composed of fine and spherical grains around 40-80 nm in size. Under the excitation of UV light and low-voltage electron-beams, LaInO3:Eu3+ phosphors show the characteristic emissions of the Eu3+ (D-5(J)-F-7(J) J,J(')=0,1,2,3 transitions). The luminescence colors can be tuned from yellowish warm white to red by changing the doping concentration of Eu3+ to some extent. The corresponding luminescence mechanisms have been proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polycrystalline powder sample of KSr4(BO3)(3) was synthesized by high-temperature solid-state reaction. The influence of different rare earth dopants, i.e. Tb3+, TM3+ and Ce3+, on thermoluminescence (TL) of KSr4(BO3)(3) Phosphor was discussed. The TL, photoluminescence (PL) and some dosimetric properties of Ce3+-activated KSr4(BO3)(3) phosphor were studied. The effect of the concentration of Ce3+ on TL intensity was investigated and the result showed that the optimum Ce3+ concentration was 0.2 mol%. The TL kinetic parameters of KSr4(BO3)(3):0.002 Ce3+ phosphor were calculated by computer glow curve deconvolution (CGCD) method. Characteristic emission peaking at about 407 and 383 nm due to the 4f(0)5d(1) -> F-2((5/2),(7/2)) transitions of Ce3+ ion were observed both in PL and three-dimensional (3D) TL spectra. The dose-response of KSr4(BO3)(3):0.002 Ce3+ to gamma-ray was linear in the range from 1 to 1000 mGy. In addition, the decay of the TL intensity of KSr4(BO3)(3):0.002 Ce3+ was also investigated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The photoluminescence (PL) and electroluminescence (EL) properties of a samarium complex Sm(TTA)(3)phen (TTA = 2-thenoyltri-fluoroacetonate, phen = 1, 10-phenanthroline) were investigated. The results show that Sm(TTA)3phen could be used as promising luminescent and electron transporting material in the electroluminescent devices. The difference between PL and EL spectra was noticed and discussed. Besides, it is noteworthy that the choice of the hole transporting layer (HTL) showed significant effect on the device performance, which was explained by the low-lying highest occupied molecular orbit (HOMO) level of Sm(TTA)3phen and the different hole injection barrier at the HTL/EML (emitting material layer) interface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new dysprosium complex Dy(PM)(3)(TP)(2) [where PM = 1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone and TP = triphenyl phosphine oxide] was synthesized, and its single-crystal structure was also studied. Its photophysical properties were studied by absorption spectra, emission spectra, fluorescence quantum efficiency, and decay time of the f-f transition of the Dy3+ ion. In addition, the antenna effect was introduced to discuss the energy transfer mechanism between the ligand and the central Dy3+ ion. Finally, a series of devices with various structures was fabricated to investigate the electroluminescence (EL) performances of Dy(PM)(3)(TP)(2). The best device with the structure ITO/CuPc 15 nm/Dy complex 70 nm/BCP 20 nm/AlQ 30 nm/LiF 1 nm/Al 100 nm exhibits a maximum brightness of 524 cd/m(2), a current efficiency of 0.73 cd/A, and a power efficiency of 0.16 lm/W, which means that a great improvement in the performances of the device was obtained as compared to the results reported in published literature. Being identical to the PL spectrum, the EL spectrum of the complex also shows characteristic emissions of the Dy3+ ion, which consist of a yellow band at 572 nm and a blue emission band at 480 nm corresponding to the F-4(9/2)-H-6(13/2) and F-4(9/2)-H-6(15/2) transition of the Dy3+ ion, respectively. Consequently, an appropriate tuning of the blue/yellow intensity ratio can be presumed to accomplish a white luminescent emission.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Triphenyl pyrazoline derivatives (TPPs) bearing electron withdrawing and pushing substitutents were synthesized. Their photoluminescence (PL) properties in the solution and doped in poly(N-vinylcarbazole) (PVK) thin films were investigated. When TPPs were doped into PVK films the photoluminescence intensity was enhanced with increasing TPPs concentration. It indicated that the energy transfer from PVK to TPPs has happened. Double and three-layer electroluminescence (EL) devices based on PVK doped with TPPs as an active layer were fabricated and investigated and the electroluminescent mechanism was followed by energy transfer from PVK to TPPs. The pyrazoline derivative with both electron withdrawing and pushing substituents was the optimistic candidate for electroluminescent emitter due to higher transfer efficiency from electric energy to light energy as well as larger luminance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work CdMoO 4 nanoparticles were obtained under hydrothermal conditions using microwave radiation (2.45 GHz) (MH) at 100°C for different times. These powders were analyzed by X-ray diffraction (XRD), Field-emisson gum scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD pattern confirmed that the pure CdMoO 4 phases were obtained. FEG-SEM powders present large-scale and homogeneous particles with microspheres-like morphology. UV-vis results were employed to determine the optical band gap these materials. Also, it showed existence of photoluminescence (PL) emission in the green wavelength range of 540-546 nm. Photocatalytic activity of CdMoO 4 nanocrystals was examined by monitoring the degradation of rhodamine B dye.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Barium praseodymium tungstate (Ba1-xPr2x/3)WO4 crystals with (x = 0, 0.01, and 0.02) were prepared by the coprecipitation method. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements, Fourier-transform Raman (FT-Raman) and Fourier-transform infrared (FT-IR) spectroscopies. The shape and size of these crystals were observed by field emission scanning electron microcopy (FE-SEM). Their optical properties were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. Moreover, we have studied the photocatalytic (PC) activity of crystals for degradation of rhodamine B (RhB) dye. XRD patterns, Rietveld refinements data, FT-Raman and FT-IR spectroscopies indicate that all crystals exhibit a tetragonal structure without deleterious phases. FT-Raman spectra exhibited 13 Raman-active modes in a range from 50 to 1000 cm(-1), while FT-IR spectra have 8 infrared active modes in a range from 200 to 1050 cm(-1). FE-SEM images showed different shapes (bonbon-, spindle-, rice-and flake-like) as well as a reduction in the crystal size with an increase in Pr3+ ions. A possible growth process was proposed for these crystals. UV-vis absorption measurements revealed a decrease in optical band gap values with an increase of Pr3+ into the matrix. An intense green PL emission was noted for (Ba1-xPr2x/3)WO4 crystals (x = 0), while crystals with (x = 0.01 and 0.02) produced a reduction in the wide band PL emission and the narrow band PL emission which is related to f-f transitions from Pr3+ ions. High photocatalytic efficiency was verified for the bonbon-like BaWO4 crystals as a catalyst in the degradation of the RhB dye after 25 min under UV-light. Finally, we discuss possible mechanisms for PL and PC properties of these crystals.