998 resultados para Phosphate chain
Resumo:
Cell-based therapy is considered a promising approach to achieving predictable periodontal regeneration. In this study, the regenerative potential of cell sheets derived from different parts of the periodontium (gingival connective tissue, alveolar bone and periodontal ligament) were investigated in an athymic rat periodontal defect model. Periodontal ligament (PDLC), alveolar bone (ABC) and gingival margin-derived cells (GMC) were obtained from human donors. The osteogenic potential of the primary cultures was demonstrated in vitro. Cell sheets supported by a calcium phosphate coated melt electrospun polycaprolactone (CaP-PCL) scaffold were transplanted to denuded root surfaces in surgically created periodontal defects, and allowed to heal for 1 and 4 weeks. The CaP-PCL scaffold alone was able to promote alveolar bone formation within the defect after 4 weeks. The addition of ABC and PDLC sheets resulted in significant periodontal attachment formation. The GMC sheets did not promote periodontal regeneration on the root surface and inhibited bone formation within the CaP-PCL scaffold. In conclusion, the combination of either PDLC or ABC sheets with a CaP-PCL scaffold could promote periodontal regeneration, but ABC sheets were not as effective as PDLC sheets in promoting new attachment formation.
Resumo:
Increasing global competition, rapid technological changes, advances in manufacturing and information technology and discerning customers are forcing supply chains to adopt improvement practices that enable them to deliver high quality products at a lower cost and in a shorter period of time. A lean initiative is one of the most effective approaches toward achieving this goal. In the lean improvement process, it is critical to measure current and desired performance level in order to clearly evaluate the lean implementation efforts. Many attempts have tried to measure supply chain performance incorporating both quantitative and qualitative measures but failed to provide an effective method of measuring improvements in performances for dynamic lean supply chain situations. Therefore, the necessity of appropriate measurement of lean supply chain performance has become imperative. There are many lean tools available for supply chains; however, effectiveness of a lean tool depends on the type of the product and supply chain. One tool may be highly effective for a supply chain involved in high volume products but may not be effective for low volume products. There is currently no systematic methodology available for selecting appropriate lean strategies based on the type of supply chain and market strategy This thesis develops an effective method to measure the performance of supply chain consisting of both quantitative and qualitative metrics and investigates the effects of product types and lean tool selection on the supply chain performance Supply chain performance matrices and the effects of various lean tools over performance metrics mentioned in the SCOR framework have been investigated. A lean supply chain model based on the SCOR metric framework is then developed where non- lean and lean as well as quantitative and qualitative metrics are incorporated in appropriate metrics. The values of appropriate metrics are converted into triangular fuzzy numbers using similarity rules and heuristic methods. Data have been collected from an apparel manufacturing company for multiple supply chain products and then a fuzzy based method is applied to measure the performance improvements in supply chains. Using the fuzzy TOPSIS method, which chooses an optimum alternative to maximise similarities with positive ideal solutions and to minimise similarities with negative ideal solutions, the performances of lean and non- lean supply chain situations for three different apparel products have been evaluated. To address the research questions related to effective performance evaluation method and the effects of lean tools over different types of supply chains; a conceptual framework and two hypotheses are investigated. Empirical results show that implementation of lean tools have significant effects over performance improvements in terms of time, quality and flexibility. Fuzzy TOPSIS based method developed is able to integrate multiple supply chain matrices onto a single performance measure while lean supply chain model incorporates qualitative and quantitative metrics. It can therefore effectively measure the improvements for supply chain after implementing lean tools. It is demonstrated that product types involved in the supply chain and ability to select right lean tools have significant effect on lean supply chain performance. Future study can conduct multiple case studies in different contexts.
Resumo:
Immune reactions play important roles in determining the in vivo fate of bone substitute materials, either in new bone formation or inflammatory fibrous tissue encapsulation. The paradigm for the development of bone substitute materials has been shifted from inert to immunomodulatory materials, emphasizing the importance of immune cells in the material evaluation. Macrophages, the major effector cells in the immune reaction to implants, are indispensable for osteogenesis and their heterogeneity and plasticity render macrophages a primer target for immune system modulation. However, there are very few reports about the effects of macrophages on biomaterial-regulated osteogenesis. In this study, we used b-tricalcium phosphate (b-TCP) as a model biomaterial to investigate the role of macrophages on the material stimulated osteogenesis. The macrophage phenotype switched to M2 extreme in response to b-TCP extracts, which was related to the activation of calcium-sensing receptor (CaSR) pathway. Bone morphogenetic protein 2 (BMP2) was also significantly upregulated by the b-TCP stimulation, indicating that macrophage may participate in the b-TCP stimulated osteogenesis. Interestingly, when macrophageconditioned b-TCP extracts were applied to bone marrow mesenchymal stem cells (BMSCs), the osteogenic differentiation of BMSCs was significantly enhanced, indicating the important role of macrophages in biomaterial-induced osteogenesis. These findings provided valuable insights into the mechanism of material-stimulated osteogenesis, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of bone substitute materials.
Resumo:
Purpose: This randomised trial was designed to investigate the activity and toxicity of continuous infusion etoposide phosphate (EP), targeting a plasma etoposide concentration of either 3 μg/ml for five days (5d) or 1 μg/ml for 15 days (15d), in previously untreated SCLC patients with extensive disease. Patients and methods: EP was used as a single agent. Plasma etoposide concentration was monitored on days 2 and 4 in patients receiving 5d EP and on days 2, 5, 8 and 11 in patients receiving 15d EP, with infusion modification to ensure target concentrations were achieved. Treatment was repeated every 21 days for up to six cycles, with a 25% reduction in target concentration in patients with toxicity. Results: The study has closed early after entry of 29 patients (14 with 5d EP, 15 with 15d EP). Objective responses were seen in seven of 12 (58%, confidence interval (CI): 27%-85%) evaluable patients after 5d EP, and two of 14 (14%, CI: 4%42%) evaluable patients after 15d EP (P = 0.038). Grade 3 or 4 neutropenia or leucopenia during the first cycle of treatment was observed in six of 12 patients after 5d EP and 0/14 patients after 15d EP (P = 0.004), with median nadir WBC count of 2.6 x 109/1 after 5d and 5.0 x 109/1 after 15d EP (P = 0.017). Only one of 49 cycles of 15d EP was associated with grade 3 or worse haematological toxicity, compared to 14 of 61 cycles of 5d EP. Conclusions: Although the number of patients entered into this trial was small, the low activity seen at 1 μg/ml in the 15d arm suggests that this concentration is below the therapeutic window in this setting. Further concentration- controlled studies with prolonged EP infusions are required.
Resumo:
Natural single-crystal specimens of althausite from Brazil, with general formula Mg2(PO4)(OH,F,O) were investigated by Raman and infrared spectroscopy. The mineral occurs as a secondary product in granitic pegmatites. The Raman spectrum of althausite is characterized by bands at 1020, 1033 and 1044 cm-1, assigned to ν1 symmetric stretching modes of the HOPO33- and PO43- units. Raman bands at around 1067, 1083 and 1138 cm-1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 575, 589 and 606 cm-1 are assigned to the ν4 out of plane bending modes of the PO4 and H2PO4 units. Raman bands at 439, 461, 475 and 503 cm-1 are attributed to the ν2 PO4 and H2PO4 bending modes. Strong Raman bands observed at 312, 346 cm-1 with shoulder bands at 361, 381 and 398 cm-1 are assigned to MgO stretching vibrations. No bands which are attributable to water were found. Vibrational spectroscopy enables aspects of the molecular structure of althausite to be assessed.
Resumo:
Vibrational spectroscopy enables subtle details of the molecular structure of kapundaite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. Kapundaite is the Fe3+ member of the wardite group. The infrared and Raman spectroscopy were applied to compare the structure of kapundaite with wardite. The Raman spectrum of kapundaite in the 800–1400 cm−1 spectral range shows two intense bands at 1089 and 1114 cm−1 assigned to the ν1PO43- symmetric stretching vibrations. The observation of two bands provides evidence for the non-equivalence of the phosphate units in the kapundaite structure. The infrared spectrum of kapundaite in the 500–1300 cm−1 shows much greater complexity than the Raman spectrum. Strong infrared bands are found at 966, 1003 and 1036 cm−1 and are attributed to the ν1PO43- symmetric stretching mode and ν3PO43- antisymmetric stretching mode. Raman bands in the ν4 out of plane bending modes of the PO43- unit support the concept of non-equivalent phosphate units in the kapundaite structure. In the 2600–3800 cm−1 spectral range, Raman bands for kapundaite are found at 2905, 3151, 3311, 3449 and 3530 cm−1. These bands are broad and are assigned to OH stretching vibrations. Broad infrared bands are also found at 2904, 3105, 3307, 3453 and 3523 cm−1 and are attributed to water. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of kapundaite to be ascertained and compared with that of other phosphate minerals.
Detection of five seedborne legume viruses in one sensitive multiplex polymerase chain reaction test
Resumo:
Vibrational spectroscopy enables subtle details of the molecular structure of minyulite KAl2(OH,F)(PO4)2⋅4(H2O). Single crystals of a pure phase from a Brazilian pegmatite were used. Minyulite belongs to the orthorhombic crystal system. This indicates that it has three axes of unequal length, yet all are perpendicular to each other. The infrared and Raman spectroscopy were applied to compare the structure of minyulite with wardite. The reason for the comparison is that both are Al containing phosphate minerals. The Raman spectrum of minyulite shows an intense band at 1012 cm−1 assigned to the ν1PO43- symmetric stretching vibrations. A series of low intensity Raman bands at 1047, 1077, 1091 and 1105 cm−1 are assigned to the ν3PO43- antisymmetric stretching modes. The Raman bands at 1136, 1155, 1176 and 1190 cm−1 are assigned to AlOH deformation modes. The infrared band at 1014 cm−1 is ascribed to the PO43- ν1 symmetric stretching vibrational mode. The infrared bands at 1049, 1071, 1091 and 1123 cm−1 are attributed to the PO43- ν3 antisymmetric stretching vibrations. The infrared bands at 1123, 1146 and 1157 cm−1 are attributed to AlOH deformation modes. Raman bands at 575, 592, 606 and 628 cm−1 are assigned to the ν4 out of plane bending modes of the PO43- unit. In the 2600–3800 cm−1 spectral range, Raman bands for minyulite are found at 3661, 3669 and 3692 cm−1 are assigned to AlOH/AlF stretching vibrations. Broad infrared bands are also found at 2904, 3105, 3307, 3453 and 3523 cm−1. Raman bands at 3225, 3324 cm−1 are assigned to water stretching vibrations. A comparison is made with the vibrational spectra of wardite. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of minyulite to be ascertained and compared with that of other phosphate minerals.
Resumo:
Vibrational spectroscopy enables subtle details of the molecular structure of whiteite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. The infrared and Raman spectroscopy were applied to compare the molecular structure of whiteite with that of other phosphate minerals. The Raman spectrum of whiteite shows an intense band at 972 cm-1 assigned to the m1 PO3- 4 symmetric stretching vibrations. The low intensity Raman bands at 1076 and 1173 cm-1 are assigned to the m3 PO3- 4 antisymmetric stretching modes. The Raman bands at 1266, 1334 and 1368 cm-1 are assigned to AlOH deformation modes. The infrared band at 967 cm-1 is ascribed to the PO3- 4 m1 symmetric stretching vibrational mode. The infrared bands at 1024, 1072, 1089 and 1126 cm-1 are attributed to the PO3-4 m3 antisymmetric stretching vibrations. Raman bands at 553, 571 and 586 cm-1 are assigned to the m4 out of plane bending modes of the PO3- 4 unit. Raman bands at 432, 457, 479 and 500 cm-1 are attributed to the m2 PO4 and H2PO4 bending modes. In the 2600 to 3800 cm-1 spectral range, Raman bands for whiteite are found 3426, 3496 and 3552 cm-1 are assigned to AlOH stretching vibrations. Broad infrared bands are also found at 3186 cm-1. Raman bands at 2939 and 3220 cm-1 are assigned to water stretching vibrations. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of whiteite to be ascertained and compared with that of other phosphate minerals.
Resumo:
The absorptive capacity of organisations is one of the key drivers of innovation performance in any industry. This research seeks to refine our understanding of the relationship between absorptive capacity and innovation performance, with a focus on characterising the absorptive capacity of the different participant groups within the Australian road industry supply chain. One of the largest and most comprehensive surveys ever undertaken of innovation in road construction was completed in 2011 by the Queensland University of Technology (QUT), based on the Australian road industry. The survey of over 200 construction industry participants covered four sectors, comprising suppliers (manufacturers and distributors), consultants (engineering consultants), contractors (head and subcontractors) and clients (state government road agencies). The survey measured the absorptive capacity and innovation activity exhibited by organisations within each of these participant groups, using the perceived importance of addressing innovation obstacles as a proxy for innovation activity. One of the key findings of the survey is about the impact of participant competency on product innovation activity. The survey found that the absorptive capacity of industry participants had a significant and positive relationship with innovation activity. Regarding the distribution of absorptive capacity, the results indicate that suppliers are more likely to have high levels of absorptive capacity than the other participant groups, with 32% of suppliers showing high absorptive capacity, ahead of contractors (18%), consultants (11%), and clients (7%). These results support the findings of previous studies in the literature and suggest the importance of policies to enhance organisational learning, particularly in relation to openness to new product ideas.
Resumo:
Calcium phosphate ceramic scaffolds have been widely investigated for bone tissue engineering due to their excellent biocompatibility and biodegradation. Unfortunately, they have the shortcoming of low mechanical properties. In order to provide strong, bioactive, and biodegradable scaffolds, a new approach of infiltrating the macro-tube ABS (acrylontrile butadiene styrene) templates with a hydroxyapatite/bioactive glass mixed slurry was developed to fabricate porous Si-doped TCP (tri-calcium phosphate) scaffolds. The porous Si-doped TCP ceramics with a high porosity (~65%) and with interconnected macrotubes (~0.8mm in diameter) and micropores (5-100 m) had a high compressive strength (up to 14.68+0.2MPa), which was comparable to that of a trabecular bone and was much higher than those of pure TCP scaffolds. Additional cell attachment study and MTT cytotoxicity assay proved the bioactivity and biocompatibility of the new scaffolds. Thus a potential bioceramic material and a new approach to make the potential scaffolds were developed for bone tissue engineering.
Resumo:
Franchising has become a way to minimise the risks of small business management. There has been little research into the factors that promote franchise relationship success. This study attempts to empirically examine the important elements (relationship quality, customer loyalty and cooperation), which might promote a successful long-term franchising relationship between franchisors and franchisees within the context of convenience stores in Taiwan. A model of these relationships was developed and tested. A total of 500 surveys were mailed to a random sample of convenience stores’ franchisee owners among the four main franchisors in Taiwan. The results show that relationship quality positively influences the cooperation between franchisors and franchisees and is positively correlated with franchisee loyalty. Additionally, the cooperative behaviour between franchisees and franchisors is significantly associated with franchisees’ loyalty.
Resumo:
Learning and memory depend on signaling mole- cules that affect synaptic efficacy. The cytoskeleton has been implicated in regulating synaptic transmission but its role in learning and memory is poorly understood. Fear learning depends on plasticity in the lateral nucleus of the amygdala. We therefore examined whether the cytoskeletal-regulatory protein, myosin light chain kinase, might contribute to fear learning in the rat lateral amygdala. Microinjection of ML-7, a specific inhibitor of myosin light chain kinase, into the lateral nucleus of the amygdala before fear conditioning, but not immediately afterward, enhanced both short-term memory and long-term memory, suggesting that myosin light chain kinase is involved specifically in memory acquisition rather than in posttraining consolidation of memory. Myosin light chain kinase inhibitor had no effect on memory retrieval. Furthermore, ML-7 had no effect on behavior when the train- ing stimuli were presented in a non-associative manner. An- atomical studies showed that myosin light chain kinase is present in cells throughout lateral nucleus of the amygdala and is localized to dendritic shafts and spines that are postsynaptic to the projections from the auditory thalamus to lateral nucleus of the amygdala, a pathway specifically impli- cated in fear learning. Inhibition of myosin light chain kinase enhanced long-term potentiation, a physiological model of learning, in the auditory thalamic pathway to the lateral nu- cleus of the amygdala. When ML-7 was applied without as- sociative tetanic stimulation it had no effect on synaptic responses in lateral nucleus of the amygdala. Thus, myosin light chain kinase activity in lateral nucleus of the amygdala appears to normally suppress synaptic plasticity in the cir- cuits underlying fear learning, suggesting that myosin light chain kinase may help prevent the acquisition of irrelevant fears. Impairment of this mechanism could contribute to pathological fear learning.