999 resultados para Phosphate adsorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sphingosine 1-phosphate (SPP), a bioactive sphingolipid metabolite, inhibits chemoinvasiveness of the aggressive, estrogen-independent MDA-MB-231 human breast cancer cell line. As in many other cell types, SPP stimulated proliferation of MDA-MB-231 cells, albeit to a lesser extent. Treatment of MDA-MB-231 cells with SPP had no significant effect on their adhesiveness to Matrigel, and only high concentrations of SPP partially inhibited matrix metalloproteinase-2 activation induced by Con A. However, SPP at a concentration that strongly inhibited invasiveness also markedly reduced chemotactic motility. To investigate the molecular mechanisms by which SPP interferes with cell motility, we examined tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin, which are important for organization of focal adhesions and cell motility. SPP rapidly increased tyrosine phosphorylation of FAK and paxillin and of the paxillin-associated protein Crk. Overexpression of FAK and kinase-defective FAK in MDA-MB-231 cells resulted in a slight increase in motility without affecting the inhibitory effect of SPP, whereas expression of FAK with a mutation of the major autophosphorylation site (F397) abolished the inhibitory effect of SPP on cell motility. In contrast, the phosphoinositide 3'-kinase inhibitor, wortmannin, inhibited chemotactic motility in both vector and FAK-F397- transfected cells. Our results suggest that autophosphorylation of FAK on Y397 may play an important role in SPP signaling leading to decreased cell motility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is accepted that the accelerated differentiation of tissue cells on bioactive materials is of great importance to regenerate the lost tissues. It was previously reported that lithium (Li) ions could enhance the in vitro proliferation and differentiation of retinoblastoma cells and endometrium epithelia by activating the Wnt canonical signalling pathway. It is interesting to incorporate Li ions into bioactive ceramics, such as β-tricalcium phosphate (Li-β-TCP), in order to stimulate both osteogenic and cementogenic differentiation of different stem cells for the regeneration of bone/periodontal tissues. Therefore, the aim of this study was to investigate the interactions of human periodontal ligament cells (hPDLCs) and human bone marrow stromal cells (hBMSCs) with Li-β-TCP bioceramic bulks and their ionic extracts, and further explore the osteogenic and cementogenic stimulation of Li-β-TCP bioceramics and the possible molecular mechanisms. The results showed that Li-β-TCP bioceramic disks supported the cell attachment and proliferation, and significantly enhanced bone/cementum-related gene expression, Wnt canonical signalling pathway activation for both hPDLCs and hBMSCs, compared to conventional β-TCP bioceramic disks without Li. The release of Li from Li-β-TCP powders could significantly promote the bone/cementum-related gene expression for both hPDLCs and hBMSCs compared to pure β-TCP extracts without Li release. Our results suggest that the combination of Li with β-TCP bioceramics may be a promising method to enhance bone/cementum regeneration as Li-β-TCP possesses excellent in vitro osteogenic and cementogenic stimulation properties by inducing bone/cementum-related gene expression in both hPDLCs and hBMSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methyl orange (MO) is a kind of anionic dye and widely used in industry. In this study, tricalcium aluminate hydrates (Ca-Al-LDHs) are used as an adsorbent to remove methyl orange (MO) from aqueous solutions. The resulting products were studied by X-ray diffraction (XRD), infrared spectroscopy (MIR), thermal analysis (TG-DTA) and scanning electron microscope (SEM). The XRD results indicated that the MO molecules were successfully intercalated into the tricalcium aluminate hydrates, with the basal spacing of Ca-Al-LDH expanding to 2.48 nm. The MIR spectrum for CaAl-MO-LDH shows obvious bands assigned to the N@N, N@H stretching vibrations and S@O, SO_ 3 group respectively, which are considered as marks to assess MO_ ion intercalation into the interlayers of LDH. The overall morphology of CaAl-MOLDH displayed a ‘‘honey-comb’’ like structure, with the adjacent layers expanded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The osteoimmunomodulatory property of bone biomaterials is a vital property determining the in vivo fate of the implants. Endowing bone biomaterials with favorable osteoimmunomodulatory properties is of great importance in triggering desired immune response and thus supports the bone healing process. Magnesium (Mg) has been recognized as a revolutionary metal for applications in orthopedics due to it being biodegradable, biocompatible, and having osteoconductive properties. However, Mg's high rate of degradation leads to an excessive inflammatory response and this has restricted its application in bone tissue engineering. In this study, β-tricalcium phosphate (β-TCP) was used to coat Mg scaffolds in an effort to modulate the detrimental osteoimmunomodulatory properties of Mg scaffolds, due to the reported favorable osteoimmunomodulatory properties of β-TCP. It was noted that macrophages switched to the M2 extreme phenotype in response to the Mg-β-TCP scaffolds, which could be due to the inhibition of the toll like receptor (TLR) signaling pathway. VEGF and BMP2 were significantly upregulated in the macrophages exposed to Mg-β-TCP scaffolds, indicating pro-osteogenic properties of macrophages in β-TCP modified Mg scaffolds. This was further demonstrated by the macrophage-mediated osteogenic differentiation of bone marrow stromal cells (BMSCs). When BMSCs were stimulated by conditioned medium from macrophages cultured on Mg-β-TCP scaffolds, osteogenic differentiation of BMSCs was significantly enhanced; whereas osteoclastogenesis was inhibited, as indicated by the downregualtion of MCSF, TRAP and inhibition of the RANKL/RANK system. These findings suggest that β-TCP coating of Mg scaffolds can modulate the scaffold's osteoimmunomodulatory properties, shift the immune microenvironment towards one that favors osteogenesis over osteoclastogenesis. Endowing bone biomaterials with favorable osteoimmunomodulatory properties can be a highly valuable strategy for the development or modification of advanced bone biomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied aspect of the molecular structure of the phosphate mineral rimkorolgite from Zheleznyi iron mine, Kovdor massif, Kola Peninsula, Russia, using SEM with EDX and vibrational spectroscopy. Qualitative chemical analysis shows a homogeneous phase, composed by P, Mg, Ba, Mn and Ca. Small amounts of Si were also observed. An intense Raman peak at 975 cm−1 is assigned to the PO43− ν1 symmetric stretching mode. The Raman band at 964 cm−1 is attributed to the HPO42− ν1 symmetric stretching vibration. Raman bands observed at 1016, 1035, 1052, 1073, 1105 and 1135 cm−1 are attributed to the ν3 antisymmetric stretching vibrations of the HPO42− and PO43− units. Complexity in the spectra of the phosphate bending region is observed. The broad Raman band at 3272 cm−1 is assigned to the water stretching vibration. Vibrational spectroscopy enables aspects on the molecular structure of rimkorolgite to be undertaken.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties. © 2013 Macmillan Publishers Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral lomonosovite has been studied using a combination of scanning electron microscopy with energy dispersive X-ray analysis and vibrational spectroscopy. Qualitative chemical analysis gave Si, P, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and Al. The mineral lomonosovite has a formula Na5Ti2(Si2O7)(PO4)O2. Raman bands observed at 909, 925 and 939 cm−1 are associated with phosphate units. Raman bands found at 975, 999, 1070, 1080 and 1084 cm−1 are attributed to siloxane stretching vibrations. The observation of multiple bands in both the phosphate stretching and bending regions supports the concept that the symmetry of the phosphate anion in the structure of lomonosovite is significantly reduced. Infrared spectroscopy identifies bands in the water stretching and bending regions, thus suggesting that water is involved with the structure of lomonosovite either through adsorption on the surface or by bonding to the phosphate units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral kidwellite, a hydrated hydroxy phosphate of ferric iron and sodium of approximate formula NaFe93+(PO4)6(OH)11⋅3H2O, has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 978 cm−1 and 1014 cm−1. These bands are attributed to the PO43− ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The series of Raman bands at 1034, 1050, 1063, 1082, 1129, 1144 and 1188 cm−1 are attributed to the ν3 antisymmetric stretching bands of the PO43− and HOPO32− units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of kidwellite. The series of Raman bands at 557, 570, 588, 602, 631, 644 and 653 cm−1are assigned to the PO43− ν2 bending modes. The series of Raman bands at 405, 444, 453, 467, 490 and 500 cm−1 are attributed to the PO43− and HOPO32− ν4 bending modes. The spectrum is quite broad but Raman bands may be resolved at 3122, 3231, 3356, 3466 and 3580 cm−1. These bands are assigned to water stretching vibrational modes. The number and position of these bands suggests that water is in different molecular environments with differing hydrogen bond distances. Infrared bands at 3511 and 3359 cm−1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm−1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral kidwellite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been well established that organic compounds with adjacent hydroxyl groups in Bayer process liquor can inhibit gibbsite precipitation by acting as seed poisons. The degree of inhibition is a function of the number and stereochemistry of the hydroxyl groups. Seed poisons generally adsorb strongly onto hydrate surfaces, implying that surface coverage is the mechanism for yield inhibition. There are examples however of organics that strongly adsorb but do not lead to yield inhibition. There is a possibility that this apparent contradiction may be an artifact of differences in conditions between the adsorption and precipitation experiments. The present work investigates the adsorption and inhibition effects of a range of compounds under strictly similar conditions to clarify the role of adsorption on yield inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A plasma-assisted concurrent Rf sputtering technique for fabrication of biocompatible, functionally graded CaP-based interlayer on Ti-6Al-4V orthopedic alloy is reported. Each layer in the coating is designed to meet a specific functionality. The adherent to the metal layer features elevated content of Ti and supports excellent ceramic-metal interfacial stability. The middle layer features nanocrystalline structure and mimics natural bone apatites. The technique allows one to reproduce Ca/P ratios intrinsic to major natural calcium phosphates. Surface morphology of the outer, a few to few tens of nanometers thick, layer, has been tailored to fit the requirements for the bio-molecule/protein attachment factors. Various material and surface characterization techniques confirm that the optimal surface morphology of the outer layer is achieved for the process conditions yielding nanocrystalline structure of the middle layer. Preliminary cell culturing tests confirm the link between the tailored nano-scale surface morphology, parameters of the middle nanostructured layer, and overall biocompatibility of the coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical emission of reactive plasma species during the synthesis of functionally graded calcium phosphate-based bioactive films has been investigated. The coatings have been deposited on Ti-6Al-4V orthopedic alloy by co-sputtering of hydroxyapatite (HA) and titanium targets in reactive plasmas of Ar + H2O gas mixtures. The species, responsible for the Ca-P-Ti film growth have been non-intrusively monitored in situ by a high-resolution optical emission spectroscopy (OES). It is revealed that the optical emission originating from CaO species dominates throughout the deposition process. The intensities of CaO, PO and CaPO species are strongly affected by variations of the operating pressure, applied RF power, and DC substrate bias. The optical emission intensity (OEI) of reaction species can efficiently be controlled by addition of H2O reactant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic surfactants modified clay minerals are usually used as adsorbents for hydrophobic organic contaminants remediation; this work however has shown organoclays can also work as adsorbents for hydrophilic anionic contaminant immobilization. Organoclays were prepared based on halloysite, kaolinite and bentonite and used for nitrate adsorption, which are significant for providing mechanism for the adsorption of anionic contaminants from waste water. XRD was used to characterize unmodified and surfactants modified clay minerals. Thermogravimetric analysis (TG) was used to determine the thermal stability and actual loading of surfactant molecules. Ion chromatography (IC) was used to determine changes of nitrate concentration before and after adsorption by these organoclays. These organoclays showed different removal capacities for anionic ions from water and adsorption mechanism was investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the clay minerals, montmorillonite is the most extensively studied material using as adsorbents, but palygorskite and its organically modified products have been least explored for their potential use in contaminated water remediation. In this study, an Australian palygorskite was modified with cationic surfactants octadecyl trimethylammonium bromide and dioctadecyl dimethylammonium bromide at different doses. A full structural characterization of prepared organo-palygorskite by X-ray diffraction, infrared spectroscopy, surface analysis and thermogravimetric analysis was performed. The morphological changes of palygorskite before and after modification were recorded using scanning electron microscopy, which showed the surfactant molecules can attach on the surface of rod-like crystals and thus can weaken the interactions between palygorskite single crystals. Real surfactants loadings on organo-palygorskites were also calculated based on thermogravimetric analysis. 1 CEC, 2 CEC octadecyl trimethylammonium bromide modified palygorskites, 1 CEC and 2 CEC dioctadecyl dimethylammonium bromide modified palygorskites absorbed as much as 12 mg/g, 42 mg/g, 9 mg/g and 25 mg/g of 2,4- dichlorophenoxyacetic acid respectively. This study has shown a potential on organo-palygorskites for organic herbicide adsorption especially anionic ones from waste water. In addition, equilibration time effects and the Langmuir and Freundlich models fitting were also investigated in details.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the synthesis, characterization and application of nano zero-valent iron (nZVI). The nZVI was produced by a reduction method and compared with commercial available ZVI powder for Pb2+ removal from aqueous phase. Comparing with commercial ZVI, the laboratory made nZVI powder has a much higher specific surface area. XRD patterns have revealed zero valent iron phases in two ZVI materials. Different morphologies have been observed using SEM and TEM techniques. EDX spectrums revealed even distribution of Pb on surface after reaction. The XPS analysis has confirmed that immobilized lead was present in its zero-valent and bivalent forms. ‘Core-shell’ structure of prepared ZVI was revealed based on combination of XRD and XPS characterizations. In addition, comparing with Fluka ZVI, this lab made nZVI has much higher reactivity towards Pb2+ and within just 15 mins 99.9% removal can be reached. This synthesized nano ZVI material has shown great potential for heavy metal immobilization from waste water.