995 resultados para Pharmaceutical chemistry
Resumo:
Transcutaneous immunization (TCI) involves the direct application of antigen plus adjuvant to skin, taking advantage of the large numbers of Langerhans cells and other resident skin dendritic cells, that process antigen then migrate to draining lymph nodes where immune responses are initiated. We have used this form of immunization to protect mice against genital tract and respiratory tract chlamydial infection. Protection was associated with local antibody responses in the vagina, uterus and lung as well as strong Th1 responses in the lymph nodes draining the reproductive tract and lungs respectively. In this study we show that topical application of GM-CSF to skin enhances the numbers and activation status of epidermal dendritic cells. Topical application of GM-CSF also increased the immune responses elicited by TCI. GM-CSF supplementation greatly increased cytokine (IFNgamma and IL-4) gene expression in lymph node and splenic cells compared to cells from animals immunized without GM-CSF. IgG responses in serum, uterine lavage and bronchoalveolar lavage and IgA responses in vaginal lavage were also increased by topical application of GM-CSF. The studies show that TCI induces protection against genital and respiratory tract chlamydial infections and that topical application of cytokines such as GM-CSF can enhance TCI-induced antibody and cell-mediated immunity.
Resumo:
Poly(styrene)-block-poly(ethylene oxide) copolymers synthesized via the combination of reversible addition fragmentation chain transfer (RAFT) polymerization and hetero Diels–Alder (HDA) cycloaddition can be cleaved in the solid state by a retro-HDA reaction occurring at 90 °C. Nanoporous films can be prepared from these polymers using a simple heating and washing procedure.
Resumo:
This study explores the development of a coding system for analysing test questions in two context-based chemistry exams. We describe our unique analytical procedures before contrasting the data from both tests. Our findings indicate that when a new curriculum is developed such as a context-based curriculum, teachers are required to combine the previously separate domains of context and concept to develop contextualised assessment. We argue that constructing contextualised assessment items requires teachers to view concepts and context as interconnected rather than as separate entities that may polarise scientific endeavour. Implications for practice, curriculum and assessment-development in context-based courses are proposed.
Resumo:
This study investigated whether conceptual development is greater if students learning senior chemistry hear teacher explanations and other traditional teaching approaches first then see computer based visualizations or vice versa. Five Canadian chemistry classes, taught by three different teachers, studied the topics of Le Chatelier’s Principle and dynamic chemical equilibria using scientific visualizations with the explanation and visualizations in different orders. Conceptual development was measured using a 12 item test based on the Chemistry Concepts Inventory. Data was obtained about the students’ abilities, learning styles (auditory, visual or kinesthetic) and sex, and the relationships between these factors and conceptual development due to the teaching sequences were investigated. It was found that teaching sequence is not important in terms of students’ conceptual learning gains, across the whole cohort or for any of the three subgroups.
Resumo:
Scientific visualisations such as computer-based animations and simulations are increasingly a feature of high school science instruction. Visualisations are adopted enthusiastically by teachers and embraced by students, and there is good evidence that they are popular and well received. There is limited evidence, however, of how effective they are in enabling students to learn key scientific concepts. This paper reports the results of a quantitative study conducted in Australian physics and chemistry classrooms. In general there was no statistically significant difference between teaching with and without visualisations, however there were intriguing differences around student sex and academic ability.
Resumo:
Visual modes of representation have always been very important in science and science education. Interactive computer-based animations and simulations offer new visual resources for chemistry education. Many studies have shown that students enjoy learning with visualisations but few have explored how learning outcomes compare when teaching with or without visualisations. This study employs a quasi-experimental crossover research design and quantitative methods to measure the educational effectiveness - defined as level of conceptual development on the part of students - of using computer-based scientific visualisations versus teaching without visualisations in teaching chemistry. In addition to finding that teaching with visualisations offered outcomes that were not significantly different from teaching without visualisations, the study also explored differences in outcomes for male and female students, students with different learning styles (visual, aural, kinesthetic) and students of differing levels of academic ability.
Resumo:
Enormous amounts of money and energy are being devoted to the development, use and organisation of computer-based scientific visualisations (e.g. animations and simulations) in science education. It seems plausible that visualisations that enable students to gain visual access to scientific phenomena that are too large, too small or occur too quickly or too slowly to be seen by the naked eye, or to scientific concepts and models, would yield enhanced conceptual learning. When the literature is searched, however, it quickly becomes apparent that there is a dearth of quantitative evidence for the effectiveness of scientific visualisations in enhancing students’ learning of science concepts. This paper outlines an Australian project that is using innovative research methodology to gather evidence on this question in physics and chemistry classrooms.
Resumo:
This study reports the factors controlling aerosolization of salbutamol sulfate (SS) from mixtures with polycaprolactone (PCL) microspheres fabricated using an emulsion technique with polyvinyl alcohol (PVA) as stabilizer. The fine particle fraction (FPF) of SS from PCL measured by a twin-stage impinger was unexpectedly found to be zero, although scanning electron microscopy showed that the drug coated the entire microsphere. Precoating the microspheres with magnesium stearate (MgSt) excipient solutions (1%–2%) significantly increased (p < 0.05, n = 5) the FPF of SS (11.4%–15.4%), whereas precoating with leucine had a similar effect (FPF = 11.3 ± 1.1%), but was independent of the solution concentration. The force of adhesion (by atomic force microscopy) between the PCL microspheres and SS was reduced from 301.4 ± 21.7 nN to 110.9 ± 30.5 nN and 121.8 ± 24.6 nN, (p < 0.05, n = 5) for 1% and 2% MgSt solutions, respectively, and to 148.1 ± 21.0 nN when coated with leucine. The presence of PVA on the PCL microspheres (detected by X-ray photoelectron spectroscopy) affected the detachment of SS due to strong adhesion between the two, presumably due to capillary forces acting between them. Precoating the microspheres with excipients increased the FPF significantly by reducing the drug–carrier adhesion. © 2011 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:733–745, 2012