942 resultados para Pesticides removal
Resumo:
Microbial electrolysis cells (MECs) are an innovative and emerging technique based on the use of solid-state electrodes to stimulate microbial metabolism for wastewater treatment and simultaneous production of value-added compounds (such as methane). This research studied the performance of a two-chamber MEC in terms of organic matter oxidation (at the anode) and methane production (at the cathode). MEC‟s anode had been previously inoculated with an activated sludge, whereas the cathode chamber inoculum was an anaerobic sludge (containing methanogenic microorganisms). During the experimentation, the bioanode was continuously fed with synthetic solutions in anaerobic basal medium, at an organic load rate (OLR) of around 1 g L-1 d-1, referred to the chemical oxygen demand (COD). At the beginning (Run I), the feeding solution contained acetate and subsequently (Run II) it was replaced with a more complex solution containing soluble organic compounds other than acetate. For both conditions, the anode potential was controlled at -0.1 V vs. standard hydrogen electrode, by means of a potentiostat. During Run I, over 80% of the influent acetate was anaerobically oxidized at the anode, and the resulting electric current was recovered as methane at the cathode (with a cathode capture efficiency, CCE, accounting around 115 %). The average energy efficiency of the system (i.e., the energy captured into methane relative to the electrical energy input) under these conditions was over 170%. However, reactor‟s performance decreased over time during this run. Throughout Run II, a substrate oxidation over 60% (on COD basis) was observed. The electric current produced (57% of coulombic efficiency) was also recovered as methane, with a CCE of 90%. For this run the MEC‟s average energy efficiency accounted for almost 170 %. During all the experimentation, a very low biomass growth was observed at the anode whereas ammonium was transferred through the cationic membrane and concentrated at the cathode. Tracer experiments and scanning electron microscopy analyses were also carried out to gain a deeper insight into the reactor performance and also to investigate the possible reasons for partial loss of performance. In conclusion, this research suggests the great potential of MEC to successfully treat low-strength wastewaters, with high energy efficiency and very low sludge production.
Resumo:
There is a need to develop viable techniques for removal and recovery organic and inorganic compounds from environmental matrices, due to their ecotoxicity, regulatory obligations or potential supplies as secondary materials. In this dissertation, electro –removal and –recovery techniques were applied to five different contaminated environmental matrices aiming phosphorus (P) recovery and/or contaminants removal. In a first phase, the electrokinetic process (EK) was carried out in soils for (i) metalloids and (ii) organic contaminants (OCs) removal. In the case of As and Sb mine contaminated soil, the EK process was additionally coupled with phytotechnologies. In a second phase, the electrodialytic process (ED) was applied to wastes aiming P recovery and simultaneous removal of (iii) toxins from membrane concentrate, (iv) heavy metals from sewage sludge ash (SSA), and (v) OCs from sewage sludge (SS). EK enhanced phytoremediation showed to be viable for the remediation of soils contaminated with metalloids, as although remediation was low, it combines advantages of both technologies while allowing site management. EK also proved to be an effective remediation technology for the removal and degradation of emerging OCs from two types of soil. Aiming P recovery and contaminants removal, different ED cell set-ups were tested. For the membrane concentrates, the best P recovery was achieved in a three compartment (3c) cell, but the highest toxin removal was obtained in a two compartment (2c) cell, placing the matrix in the cathode end. In the case of SSA the best approach for simultaneous P recovery and heavy metals removal was to use a 2c-cell placing the matrix in the anode end. However, for simultaneous P recovery and OCs removal, SS should be placed in the cathode end, in a 2c-cell. Overall, the data support that the selection of the cell design should be done case-by-case.
Resumo:
Phosphorus is a macronutrient essential to life which comes from phosphate rock, a non-renewable resource. Sewage sludge from wastewater treatment plants (WWTP) is a secondary resource rich in phosphorus that can be valorized. However, organic compounds are detected in sewage sludge, due to its non-polar and hydrophobic character, being considered an environmental risk. The present dissertation aims to study the efficiency of the electrodialytic process (ED) when applied to sewage sludge aiming phosphorus recovery and organic contaminants removal. Four organic compounds were analyzed: 17α-ethynylestradiol (EE2), bisphenol A (BPA), caffeine (Caf) and oxybenzone (MBPh). The experiments took place in an ED cell with two compartments and an anion exchange membrane, with the sludge in the cathode compartment. The experiments were carried out for three days with spiked sewage sludge (six assays). One control experiment was done without current, three experiments were carried out applying a constant current of 50, 75, and 100 mA and two experiments were carried out applying sequential currents: 50 mA, 75 mA and 100 mA and the opposite (100-75-50 mA). A qualitative and quantitative analysis of microorganisms existing in the samples was also done. At the end, the pH increased in the sewage sludge favoring phosphorus recovery. In terms of phosphorus, the highest recovery was achieved in the experiment run with 100 mA, where 70.3±2.0% of total phosphorus was recovered in the electrolyte. Generally, compounds degradation was favored by the current. Caf and MBPh achieved degradation percentages of 96.2±0.2% and 84.8±1.3%, respectively, in 100 mA assay. EE2 (83.1±1.7%) and BPA (91.8±4.6%) degradations were favored by 50 mA current. A total of 35 taxa from four different groups were identified, totalizing between 81,600-273,000 individuals per gram of initial sludges. After ED, microbial community population decreased between 47-98%. Arcella gibbosa represented 61% of the total observed organisms and revealed to be more tolerant to medium changes.
Resumo:
Pharmaceuticals and personal care products (PPCPs) are widely used on a daily basis. After their usage they reach the wastewater treatment plants (WWTPs). These compounds have different physico-chemical characteristics, which makes them difficult to completely remove in the WWTPs, througth conventional treatments. Currently, there is no legislation regarding PPCPs thresholds in effluent discharge. But, even at vestigial concentrations, these compounds enclose environmental risks due to, e.g., endocrine disruption potential. There is a need of alternative techniques for their removal in WWTPs. The main goal of this work was to assess the use of electrodialytic (ED) process to remove PPCPs from the effluent to be discharged. A two-compartment ED cell was used testing (i) the effluent position in the cell (anode and cathode compartment); (ii) the use of anion (AEM) and cation exchange membrane (CEM); (iii) the treatment period (6, 12 and 24 hours); (iv) effluent recirculation and current steps; (v) the feasibility of sequential treatments. Phosphorus (P) removal from effluent and energetic costs associated to the process were also evaluated. Five PPCPs were studied – caffeine (CAF), bisphenol A (BPA), 17 β-estradiol (E2), ethinyl estradiol (EE2) and oxybenzone (MBPh). The ED process showed to be effective in the removal when effluent is in the anode compartment. Oxidation is suggested to be the main removal process, which was between 88 and 96%, for all the compounds, in 6 hours. Nevertheless, the presence of intermediates and/or by-products was also observed in some cases. Effluent recirculation should have a retention time in the ED cell big enough to promote removal whereas the current steps (effluent in anode compartment) slightly increased removal efficiencies (higher than 80% for all PPCPs). The sequential set of ED treatment (effluent in anode compartment) showed to be effective during both periods with a removal percentage between 80 and 95% and 73 to 88% in the case of AEM and CEM, respectively. Again, the main removal process is strongly suggested to be oxidation in the anode compartment. However, there was an increase of BOD5 and COD, which might be explained by effluent spiking, these parameters limiting the effluent discharge. From these treatments, the use of AEM, enhanced the P removal from effluent to minimize risk of eutrophication. Energetic costs of the best set-up (6 hours) are approximately 0,8€/m3 of wastewater, a value considered low, attending to the prices of other treatment processes.
Resumo:
Erythrosine B is widely used for coloring in various applications, especially in the food industry, despite its already proved toxicity and carcinogenicity. The agrowaste pumpkin seed hulls were applied as potential adsorbent for the removal of Erythrosine from aqueous solutions. Adsorption mechanism and kinetics were analyzed for design purposes. The seed hulls were characterized by specific techniques before and after dye retention. It was found that the attachment of Erythrosine B molecules on adsorbent surface may be attributed to the interactions between carboxyl and/or carbonyl groups of both dye and agrowaste wall components. A univariate approach followed by a factorial design was applied to study and analyze the experimental results as well as to estimate the combined effects of the process factors on the removal efficiency and dye uptake. Adsorption mechanism may be predominantly due to intraparticle diffusion, dependent on pore size. The four equilibrium models applied fitted the data well; the maximum adsorption capacity for Erythrosine was 16.4 mg/g. The results showed that adsorbent is effective for Erythrosine B removal for a large concentration range in aqueous solutions (5400 mg/L) in batch systems.
Resumo:
Source point treatment of effluents with a high load of pharmaceutical active compounds (PhACs), such as hospital wastewater, is a matter of discussion among the scientific community. Fungal treatments have been reported to be successful in degrading this type of pollutants and, therefore, the white-rot fungus Trametes versicolor was applied for the removal of PhACs from veterinary hospital wastewater. Sixty-six percent removal was achieved in a non-sterile batch bioreactor inoculated with T. versicolor pellets. On the other hand, the study of microbial communities by means of DGGE and phylogenetic analyses led us to identify some microbial interactions and helped us moving to a continuous process. PhAC removal efficiency achieved in the fungal treatment operated in non-sterile continuous mode was 44 % after adjusting the C/N ratio with respect to the previously calculated one for sterile treatments. Fungal and bacterial communities in the continuous bioreactors were monitored as well.
Resumo:
The aim of this study was to evaluate tetracycline antibiotic (TA) removal from contaminated water by Moringa oleifera seed preparations. The composition of synthetic water approximate river natural contaminated water and TA simulated its presence as an emerging pollutant. Interactions between TA and protein preparations (extract; fraction and lectin) were also evaluated. TA was determined by solid phase extraction followed by high performance liquid chromatography - mass spectrometry. Moringa extract and flour removed TA from water. Extract removed TA in all concentrations and better removal (40%) was obtained with 40 mg L1; seed flour (particles < 5mm), 1.25 g L1 and 2.50 g L1 removed 28 and 29% of tetracycline, respectively; particles > 5 mm (0.50 g L1) removed 55% of antibiotic. Interactions between TA and seed preparations were assayed by haemagglutinating activity (HA). Specific HA (SHA) of extract (pH 7) was abolished with tetracycline (5 mg L1); fraction (75%) and lectin HA (97%) were inhibited with TA. Extract SHA decreased by 75% at pH 8. Zeta potential (ZP) of extract 700 mg L1 and tetracycline 50 mg L1 , pH range 5 to 8, showed different results. Extract ZP was more negative (10.73 mV to 16.00 mV) than tetracycline ZP (0.27 mV to 20.15 mV); ZP difference was greater in pH 8. The focus of this study was achieved since moringa preparations removed TA from water and compounds interacting with tetracycline involved at least lectin binding sites. This is a natural process, which do not promote environmental damage.
Resumo:
Zearalenone (ZEN) is a mycotoxin that has relatively low acute toxicity. However, it is a potent oestrogen, interfering with the reproductive tract of animals. Among other effects, ZEN decreases animals fertility, and induces fibrosis in the uterus, breast cancer and endometrial carcinoma (Zinedine et al., 2007). Anti-mycotoxin additives (AMA) are defined as a group of products that, when added to animal feed, are capable of adsorbing, inactivating, or neutralizing mycotoxins in the gastrointestinal tract of animals. One example of these products are adsorbents based on yeast cell walls, a safe and beneficial animal feed additive (Abreu et al., 2008). When based on active cells, yeast based products also act as a probiotic, contributing to improve the general animal health because it stimulates their immune system and promotes the integrity of intestinal mucosa (Albino et al., 2006). Strains of Saccharomyces cerevisiae isolated from silage were tested for their ZEN removal capability. Their effect on - and b-zearalenol (-ZOL and b-ZOL) was also tested. Strains were grown on YPD separately supplemented with ZEN, -ZOL and b-ZOL, and their elimination from culture media was quantified over time by HPLC-FL.
Resumo:
Mycotoxins are toxic secondary metabolites produced by certain moulds, being ochratoxin A (OTA) one of the most relevant. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L--phenylalanine via an amide bond. OTA contamination of wines might be a risk to consumer health, thus requiring treatments to achieve acceptable standards for human consumption [1]. According to the Regulation No. 1881/2006 of the European Commission, the maximum limit for OTA in wine is 2 µg/kg [2]. Therefore, the aim of this work was to know the effect of different fining agents on OTA removal, as well as their impact on white and red wine physicochemical characteristics. To evaluate their efficiency, 11 commercial fining agents (mineral, synthetic, animal and vegetable proteins) were used to get new approaches on OTA removal from white and red wines. Trials were performed in wines artificially supplemented (at a final concentration of 10 µg/L) with OTA. The most effective fining agent in removing OTA (80%) from white wine was a commercial formulation that contains gelatine, bentonite and activated carbon. Removals between 10-30% were obtained with potassium caseinate, yeast cell walls and pea protein. With bentonites, carboxymethylcellulose, polyvinylpolypyrrolidone and chitosan no considerable OTA removal was verified. In red wine, removals between 6-19% were obtained with egg albumin, yeast cell walls, pea protein, isinglass, gelatine, polyvinylpolypyrrolidone and chitosan. The most effective fining agents in removing OTA from red wine were an activated carbon (66%) followed again by the commercial formulation (55%), being activated carbon a well-known adsorbent of mycotoxins. These results may provide useful information for winemakers, namely for the selection of the most appropriate oenological product for OTA removal, reducing wine toxicity and simultaneously enhancing food safety and wine quality.
Resumo:
The presence of mycotoxins in foodstuff is a matter of concern for food safety. Mycotoxins are toxic secondary metabolites produced by certain molds, being ochratoxin A (OTA) one of the most relevant. Wines can also be contaminated with these toxicants. Several authors have demonstrated the presence of mycotoxins in wine, especially ochratoxin A (OTA) [1]. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L--phenylalanine via an amide bond. As these toxicants can never be completely removed from the food chain, many countries have defined levels in food in order to attend health concerns. OTA contamination of wines might be a risk to consumer health, thus requiring treatments to achieve acceptable standards for human consumption [2]. The maximum acceptable level of OTA in wines is 2.0 g/kg according to the Commission regulation No. 1881/2006 [3]. Therefore, the aim of this work was to reduce OTA to safer levels using different fining agents, as well as their impact on white wine physicochemical characteristics. To evaluate their efficiency, 11 commercial fining agents (mineral, synthetic, animal and vegetable proteins) were used to get new approaches on OTA removal from white wine. Trials (including a control without addition of a fining agent) were performed in white wine artificially supplemented with OTA (10 µg/L). OTA analysis were performed after wine fining. Wine was centrifuged at 4000 rpm for 10 min and 1 mL of the supernatant was collected and added of an equal volume of acetonitrile/methanol/acetic acid (78:20:2 v/v/v). Also, the solid fractions obtained after fining, were centrifuged (4000 rpm, 15 min), the resulting supernatant discarded, and the pellet extracted with 1 mL of the above solution and 1 mL of H2O. OTA analysis was performed by HPLC with fluorescence detection according to Abrunhosa and Venâncio [4]. The most effective fining agent in removing OTA (80%) from white wine was a commercial formulation that contains gelatine, bentonite and activated carbon. Removals between 10-30% were obtained with potassium caseinate, yeast cell walls and pea protein. With bentonites, carboxymethylcellulose, polyvinylpolypyrrolidone and chitosan no considerable OTA removal was verified. Following, the effectiveness of seven commercial activated carbons was also evaluated and compared with the commercial formulation that contains gelatine, bentonite and activated carbon. The different activated carbons were applied at the concentration recommended by the manufacturer in order to evaluate their efficiency in reducing OTA levels. Trial and OTA analysis were performed as explained previously. The results showed that in white wine all activated carbons except one reduced 100% of OTA. The commercial formulation that contains gelatine, bentonite and activated carbon (C8) reduced only 73% of OTA concentration. These results may provide useful information for winemakers, namely for the selection of the most appropriate oenological product for OTA removal, reducing wine toxicity and simultaneously enhancing food safety and wine quality.
Resumo:
Aromatic amines are widely used industrial chemicals as their major sources in the environment include several chemical industry sectors such as oil refining, synthetic polymers, dyes, adhesives, rubbers, perfume, pharmaceuticals, pesticides and explosives. They result also from diesel exhaust, combustion of wood chips and rubber and tobacco smoke. Some types of aromatic amines are generated during cooking, special grilled meat and fish, as well. The intensive use and production of these compounds explains its occurrence in the environment such as in air, water and soil, thereby creating a potential for human exposure. Since aromatic amines are potential carcinogenic and toxic agents, they constitute an important class of environmental pollutants of enormous concern, which efficient removal is a crucial task for researchers, so several methods have been investigated and applied. In this chapter the types and general properties of aromatic amine compounds are reviewed. As aromatic amines are continuously entering the environment from various sources and have been designated as high priority pollutants, their presence in the environment must be monitored at concentration levels lower than 30 mg L1, compatible with the limits allowed by the regulations. Consequently, most relevant analytical methods to detect the aromatic amines composition in environmental matrices, and for monitoring their degradation, are essential and will be presented. Those include Spectroscopy, namely UV/visible and Fourier Transform Infrared Spectroscopy (FTIR); Chromatography, in particular Thin Layer (TLC), High Performance Liquid (HPLC) and Gas chromatography (GC); Capillary electrophoresis (CE); Mass spectrometry (MS) and combination of different methods including GC-MS, HPLC-MS and CE-MS. Choosing the best methods depend on their availability, costs, detection limit and sample concentration, which sometimes need to be concentrate or pretreated. However, combined methods may give more complete results based on the complementary information. The environmental impact, toxicity and carcinogenicity of many aromatic amines have been reported and are emphasized in this chapter too. Lately, the conventional aromatic amines degradation and the alternative biodegradation processes are highlighted. Parameters affecting biodegradation, role of different electron acceptors in aerobic and anaerobic biodegradation and kinetics are discussed. Conventional processes including extraction, adsorption onto activated carbon, chemical oxidation, advanced oxidation, electrochemical techniques and irradiation suffer from drawbacks including high costs, formation of hazardous by-products and low efficiency. Biological processes, taking advantage of the naturally processes occurring in environment, have been developed and tested, proved as an economic, energy efficient and environmentally feasible alternative. Aerobic biodegradation is one of the most promising techniques for aromatic amines remediation, but has the drawback of aromatic amines autooxidation once they are exposed to oxygen, instead of their degradation. Higher costs, especially due to power consumption for aeration, can also limit its application. Anaerobic degradation technology is the novel path for treatment of a wide variety of aromatic amines, including industrial wastewater, and will be discussed. However, some are difficult to degrade under anaerobic conditions and, thus, other electron acceptors such as nitrate, iron, sulphate, manganese and carbonate have, alternatively, been tested.
Resumo:
Supplementary data associated with this article can be found, in the online version, at: http://dx.doi.org/10.1016/j.cej.2016.03.148.
Resumo:
Los sistemas de agua dulce constituyen fuentes vitales para el desarrollo de la vida. Entre otras causas, el excesivo y poco controlado uso de pesticidas por las prácticas agrícolas modernas ha contribuido con la degradación de estos ecosistemas en la provincia de Córdoba (Secretaría de Ambiente, 2008). Los pesticidas son compuestos tóxicos y químicamente estables en el ambiente. Diversas especies microbianas presentan la capacidad para mineralizar dichos compuestos, siendo uno de los mecanismos de descomposición más importante. En el presente trabajo se pretende (1) Detectar y cuantificar principios activos de pesticidas en diferentes aguas ambientales de la región centro-sur de la provincia de Córdoba; (2) Aislar y caracterizar especies bacterianas a partir de muestras de aguas superficiales y subterráneas de la región que demuestren ser eficientes en la biodegradación de diferentes pesticidas. Para ello, se estudiará la presencia de 10 pesticidas organoclorados y organofosforados (lindano, 2,4D, DDT, p,p-DDE, �-endosulfán, �-endosulfán, clorpirifós, dimetoato) y herbicidas (atrazina) en muestras de agua superficiales y subterráneas (8 - 12m de profundidad) de la región agrícola centro-sur de Córdoba. Se establecerán diferentes puntos de muestreo en las principales cuencas hidrográficas: Río Tercero y Embalse de Río Tercero, Canal Desviador de Bell Ville, Laguna La Salada, Río Saladillo, Río Carcarañá y Río Cuarto. La determinación de pesticidas se realizará mediante Cromatografía de Gases (GC). Conjuntamente, se realizará el aislamiento de microorganismos a partir de las muestras de agua suplementadas con diferentes concentraciones de pesticidas (López et al., 2005) y se procederá a la caracterización morfológica y bioquímica (Lechevalier, 1989). Se realizarán curvas de crecimiento (DO600) y se determinará la viabilidad celular mediante el método de recuento en placa. El potencial catabólico de cada aislamiento se determinará analizando la concentración residual de pesticidas en el sobrenadante de los cultivos (Benimeli et al, 2003) y mediante ensayos de resting-cell (Hernández et al, 2008). Finalmente se realizará la caracterización genética (Weisburg, 1991) de los aislamientos que demuestren una mayor eficiencia en la biodegradación de pesticidas. El presente estudio pretende abordar una temática prioritaria como es la contaminación ambiental de ecosistemas acuáticos de la provincia de Córdoba. la detección de principios activos de pesticidas sería, por lo tanto, un indicador de contaminación de origen antropológica y brindaría información respecto al deterioro de la calidad del agua. Por otra parte, el aislamiento de bacterias adaptadas a las condiciones ecológicas de la región y capaces de metabolizar eficientemente diferentes pesticidas como fuentes de carbono y energía sería beneficioso para su utilización en futuros ensayos de biorremediación.
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2013
Resumo:
Columnar cell apical membranes (CCAM) in series with goblet cell apical membranes (GCAM) form an electroosmotic barrier separating the midgut lumen from epithelial cell cytoplasm. A unique K+ ATPase in GCAM generates three gradients across this barrier. A greater than 180 mV electrical gradient (lumen positive) drives amino acid uptake through voltage-dependent K+ symports. A greater than 1000-fold [H+] gradient (lumen alkaline) and a greater than 10-fold [K+] gradient (lumen concentrated) are adaptations to the high tannin and high K+ content, respectively, in dietary plant material. Agents which act on the apical membrane and disrupt the PD, H+, or K+ gradients are potential insecticides. Insect sensory epithelia and mammalian stria vascularis maintain similar PD and K+ gradients but would not be exposed to ingested anti-apical membrane insecticides. Following the demonstration by Sacchi et al. that Bacillus thuringiensis delta-endotoxin (Bt) induces specifically a K+ conductance increase in CCAM vesicles, we find that the K+ channel blocking agent, Ba2+, completely reverses Bt inhibition of the K+-carried short circuit current in the isolated midgut of Manduca sexta. Progress in characterizing the apical membrane includes finding that fluorosulfonylbenzoyladenosine binds specifically to certain GCAM polypeptides and that CCAM vesicles can be mass produced by Ca2+ or Mg2+ precipitation from Manduca sexta midgut.