978 resultados para Permanent Magnet Synchronous Motor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study barium hexaferrite was (general formulae BaFe12O19) was synthesized by the Pechini method under different conditions of heat treatment. Precursors like barium carbonate and iron nitrate were used. These magnetic ceramic, with magnetoplumbite type structure, are widely used as permanent magnet because of its excellent magnetic properties, such as: high Curie temperature, good magnetic anisotropy, high coercivity and corrosion resistance. The samples were characterized by thermal analysis (DTA and TG), X- ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) end Vibrating sample Magnetometer (VSM). The results confirm the expected phase, which was reinforced according to our analysis. A single phase powder at relatively high temperatures with particle sizes around 100 nm was obtained. The characteristic magnetic behavior one of the phases has been noted (probably superparamagnetic material), while another phase was identified as a ferrimagnetic material. The ferrimagnetic phase showed vortex configuration with two central and slightly inclined plateaus. In general, increase of heat treatment temperature and time, directly influenced the technological properties of the samples

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on a low frequency piezoelectric energy harvester that scavenges energy from a wire carrying an AC current. The harvester is described, fabricated and characterized. The device consists of a silicon cantilever with integrated piezoelectric capacitor and proof-mass that incorporates a permanent magnet. When brought close to an AC current carrying wire, the magnet couples to the AC magnetic field from a wire, causing the cantilever to vibrate and generate power. The measured average power dissipated across an optimal resistive load was 1.5 μW. This was obtained by exciting the device into mechanical resonance using the electro-magnetic field from the 2 A source current. The measurements also reveal that the device has a nonlinear response that is due to a spring hardening mechanism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an improved field weakening algorithm for synchronous reluctance motor (RSMs) drives. The proposed algorithm is robust to the variations in the machine d- and q-axes inductances. The transition between the maximum torque per ampere (MTPA), current and voltage limits as well as the maximum torque per flux (MTPF) trajectories is smooth. The proposed technique is combined with the direct torque control method to attain a high performance drive in the field weakening region. Simulation and experimental results are supplemented to verify the effectiveness of the proposed approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the design, fabrication and testing of a moving magnet type linear motor of dual piston configuration for a pulse tube cryocooler for ground applications. Eight radially magnetized segmented magnets were used to form one set of a magnet ring. Four magnet rings of such type were constructed, in which one pair of rings has north-pole on its outer diameter and south-pole on inner diameter, while the other pair is it's complementary. The magnets were mounted with opposite poles together on the magnet holder with an axial moving shaft having a piston mounted on both ends of the shaft. The shaft movement was restricted to the axial direction by using C-clamp type flexures, mounted on both sides of the shaft. The force requirement for driving the compressor was calculated based on which the electrical circuit of motor is designed by proper selection of wire gauge and Ampere-turns. The flexure spring force estimation was done through simulation using ANSYS 11.0 and was verified experimentally; while the magnet spring force was determined experimentally. The motor with mounted piston was tested using a variable voltage and variable frequency power supply capable of driving 140 watts of load.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work aims to present the design and the evaluation of a standard multi-pole machine with permanent magnets inserted in the rotor by two different geometrical forms: aligned and skewed magnets. The design (new analytical method) was based on a standard 250 W three phase 12-pole induction motor (squirrel cage rotor type), beginning with the original stator constructive data to calculate the magnetic flux density to determine the permanent magnets. In the development of the work, a simple and modular rotor was built reusing the original 12-pole stator (concentrated windings). The machine was evaluated in a laboratory for the purpose of checking the quantity and quality of energy produced with the machine operating as a generator and its start, torque, and performance working as a motor. In conclusion, the modular skewed magnet is an option for electrical machines, for the generation of a reasonable quality, in the context of decentralized generation and a motor with high torque and low energetic consumption.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although neuronal synchronization has been shown to exist in primary motor cortex (MI), very little is known about its possible contribution to coding of movement. By using cross-correlation techniques from multi-neuron recordings in MI, we observed that activity of neurons commonly synchronized around the time of movement initiation. For some cell pairs, synchrony varied with direction in a manner not readily predicted by the firing of either neuron. Information theoretic analysis demonstrated quantitatively that synchrony provides information about movement direction beyond that expected by simple rate changes. Thus, MI neurons are not simply independent encoders of movement parameters but rather engage in mutual interactions that could potentially provide an additional coding dimension in cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ironless motor for use as direct wheel drive is presented. The motor is intended for use in a lightweight (600kg), low drag, series hybrid commuter vehicle under development at The University of Queensland. The vehicle will utilise these ironless motors in each of its rear wheels, with each motor producing a peak torque output of 500Nm and a maximum rotational speed of 1500rpm. The axial flux motor consists of twin Ironless litz wire stators with a central magnetic ring and simplified Halbach magnet arrays on either side. A small amount of iron is used to support the outer Halbach arrays and to improve the peak magnetic flux density. Ducted air cooling is used to remove heat from the motor and will allow for a continuous torque rating of 250Nm. Ironless machines have previously been shown to be effective in high speed, high frequency applications (+1000Hz). They are generally regarded as non-optimal for low speed applications as iron cores allow for better magnet utilisation and do not significantly increase the weight of a machine. However, ironless machines can also be seen to be effective in applications where the average torque requirement is much lower than the peak torque requirement such as in some vehicle drive applications. The low spinning losses in ironless machines are shown to result in very high energy throughput efficiency in a wide range of vehicle driving cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A torque control scheme, based on a direct torque control (DTC) algorithm using a 12-sided polygonal voltage space vector, is proposed for a variable speed control of an open-end induction motor drive. The conventional DTC scheme uses a stator flux vector for the sector identification and then the switching vector to control stator flux and torque. However, the proposed DTC scheme selects switching vectors based on the sector information of the estimated fundamental stator voltage vector and its relative position with respect to the stator flux vector. The fundamental stator voltage estimation is based on the steady-state model of IM and the synchronous frequency of operation is derived from the computed stator flux using a low-pass filter technique. The proposed DTC scheme utilizes the exact positions of the fundamental stator voltage vector and stator flux vector to select the optimal switching vector for fast control of torque with small variation of stator flux within the hysteresis band. The present DTC scheme allows full load torque control with fast transient response to very low speeds of operation, with reduced switching frequency variation. Extensive experimental results are presented to show the fast torque control for speed of operation from zero to rated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low-order harmonic pulsating torque is a major concern in high-power drives, high-speed drives, and motor drives operating in an overmodulation region. This paper attempts to minimize the low-order harmonic torques in induction motor drives, operated at a low pulse number (i.e., a low ratio of switching frequency to fundamental frequency), through a frequency domain (FD) approach as well as a synchronous reference frame (SRF) based approach. This paper first investigates FD-based approximate elimination of harmonic torque as suggested by classical works. This is then extended into a procedure for minimization of low-order pulsating torque components in the FD, which is independent of machine parameters and mechanical load. Furthermore, an SRF-based optimal pulse width modulation (PWM) method is proposed to minimize the low-order harmonic torques, considering the motor parameters and load torque. The two optimal methods are evaluated and compared with sine-triangle (ST) PWM and selective harmonic elimination (SHE) PWM through simulations and experimental studies on a 3.7-kW induction motor drive. The SRF-based optimal PWM results in marginally better performance than the FD-based one. However, the selection of optimal switching angle for any modulation index (M) takes much longer in case of SRF than in case of the FD-based approach. The FD-based optimal solutions can be used as good starting solutions and/or to reasonably restrict the search space for optimal solutions in the SRF-based approach. Both of the FD-based and SRF-based optimal PWM methods reduce the low-order pulsating torque significantly, compared to ST PWM and SHE PWM, as shown by the simulation and experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functional Electrical Stimulation (FES) is a technique that consists on applying electrical current pulses to artificially activate motor nerve fibers and produce muscle contractions to achieve functional movements. The main applications of FES are within the rehabilitation field, in which this technique is used to aid recovery or to restore lost motor functions. People that benefit of FES are usually patients with neurological disorders which result in motor dysfunctions; most common patients include stroke and spinal cord injury (SCI). Neuroprosthesis are devices that have their basis in FES technique, and their aim is to bridge interrupted or damaged neural paths between the brain and upper or lower limbs. One of the aims of neuroprosthesis is to artificially generate muscle contractions that produce functional movements, and therefore, assist impaired people by making them able to perform activities of daily living (ADL). FES applies current pulses and stimulates nerve fibers by means of electrodes, which can be either implanted or surface electrodes. Both of them have advantages and disadvantages. Implanted electrodes need open surgery to place them next to the nerve root, so these electrodes carry many disadvantages that are produced by the use of invasive techniques. In return, as the electrodes are attached to the nerve, they make it easier to achieve selective functional movements. On the contrary, surface electrodes are not invasive and are easily attached or detached on the skin. Main disadvantages of surface electrodes are the difficulty of selectively stimulating nerve fibers and uncomfortable feeling perceived by users due to sensory nerves located in the skin. Electrical stimulation surface electrode technology has improved significantly through the years and recently, multi-field electrodes have been suggested. This multi-field or matrix electrode approach brings many advantages to FES; among them it is the possibility of easily applying different stimulation methods and techniques. The main goal of this thesis is therefore, to test two stimulation methods, which are asynchronous and synchronous stimulation, in the upper limb with multi-field electrodes. To this end, a purpose-built wrist torque measuring system and a graphic user interface were developed to measure wrist torque produced with each of the methods and to efficiently carry out the experiments. Then, both methods were tested on 15 healthy subjects and sensitivity results were analyzed for different cases. Results show that there are significant differences between methods regarding sensation in some cases, which can affect effectiveness or success of FES.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hipóxia isquemia (HI) pré-natal é uma das principais causas de mortalidade e doenças neurológicas crônicas em neonatos, que podem apresentar déficits remanentes como: retardamento, paralisia cerebral, dificuldade de aprendizado ou epilepsia. Estes prejuízos, provavelmente, estão relacionados com o atraso no desenvolvimento neural, astrogliose e com a perda de neurônios e oligodendrócitos. Déficits funcionais e cognitivos estão associados à degeneração de vias dopaminérgicas e de estruturas hipocampais. A enzima tirosina hidroxilase (TH) é a enzima limitante na síntese de dopamina e seus níveis são alterados em eventos de HI. O óxido nítrico (NO) é um gás difusível que atua modulando diferentes sistemas, participando de eventos como plasticidade sináptica e neuromodulação no sistema nervoso central e é produzido em grandes quantidades em eventos de injúria e inflamação, como é o caso da HI. O presente estudo teve por objetivos avaliar, utilizando o modelo criado por Robinson e colaboradores em 2005, os efeitos da HI sobre o comportamento motor e avaliar o desenvolvimento de estruturas encefálicas relacionadas a este comportamento como a substância negra (SN) e o complexo hipocampal. A HI foi induzida a partir do clampeamento das artérias uterinas da rata grávida, por 45 minutos no décimo oitavo dia de gestação (grupo HI). Em um grupo de fêmeas a cirurgia foi realizada, mas não houve clampeamento das artérias (grupo SHAM). A avaliação do comportamento motor foi realizada com os testes ROTAROD e de campo aberto em animais de 45 dias. Os encéfalos foram processados histologicamente nas idades de P9, P16, P23 e P90, sendo então realizada imunohistoquímica para TH e histoquímica para NADPH diaforase (NADPH-d), para avaliação do NO. Nossos resultados demonstraram redução da imunorreatividade para a TH em corpos celulares na SN aos 16 dias no grupo HI e aumento na imunorreatividade das fibras na parte reticulada aos 23 dias, com a presença de corpos celulares imunorreativos nesta região no grupo HI. Demonstramos também aumento do número de células marcadas para NADPH-d no giro dentado nos animais HI, nas idades analisadas, assim como aumento na intensidade de reação no corno de Ammon (CA1 e CA3) aos 9 dias no grupo HI, e posterior redução nesta marcação aos 23 e 90dias neste mesmo grupo. Nos testes comportamentais, observamos diminuição da atividade motora no grupo HI com uma melhora do desempenho ao longo dos testes no ROTAROD, sem entretanto atingir o mesmo nível do grupo SHAM. Os animais HI não apresentaram maior nível de ansiedade em relação ao grupo SHAM, descartando a hipótese das alterações observadas nos testes de motricidade estarem relacionadas a fatores ansiogênicos. O modelo de clampeamento das artérias uterinas da fêmea se mostrou uma ferramenta importante no estudo das alterações decorrentes do evento de HI pré-natal, por produzir diversos resultados que são similares aos ocorridos em neonatos que passam por este evento.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Rapid compensatory arm reactions represent important response strategies following an unexpected loss of balance. While it has been assumed that early corrective actions arise largely from sub-cortical networks, recent findings have prompted speculation about the potential role of cortical involvement. To test the idea that cortical motor regions are involved in early compensatory arm reactions, we used continuous theta burst stimulation (cTBS) to temporarily suppress the hand area of primary motor cortex (M1) in participants prior to evoking upper limb balance reactions in response to whole body perturbation. We hypothesized that following cTBS to the M1 hand area evoked EMG responses in the stimulated hand would be diminished. To isolate balance reactions to the upper limb participants were seated in an elevated tilt-chair while holding a stable handle with both hands. The chair was held vertical by a magnet and was triggered to fall backward unpredictably. To regain balance, participants used the handle to restore upright stability as quickly as possible with both hands. Muscle activity was recorded from proximal and distal muscles of both upper limbs.

Results: Our results revealed an impact of cTBS on the amplitude of the EMG responses in the stimulated hand muscles often manifest as inhibition in the stimulated hand. The change in EMG amplitude was specific to the target hand muscles and occasionally their homologous pairs on the non-stimulated hand with no consistent effects on the remaining more proximal arm muscles.

Conclusions: Present findings offer support for cortical contributions to the control of early compensatory arm reactions following whole-body perturbation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia