953 resultados para Permanent Magnet Generator


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The need to incorporate advanced engineering tools in biology, biochemistry and medicine is in great demand. Many of the existing instruments and tools are usually expensive and require special facilities.^ With the advent of nanotechnology in the past decade, new approaches to develop devices and tools have been generated by academia and industry. ^ One such technology, NMR spectroscopy, has been used by biochemists for more than 2 decades to study the molecular structure of chemical compounds. However, NMR spectrometers are very expensive and require special laboratory rooms for their proper operation. High magnetic fields with strengths in the order of several Tesla make these instruments unaffordable to most research groups.^ This doctoral research proposes a new technology to develop NMR spectrometers that can operate at field strengths of less than 0.5 Tesla using an inexpensive permanent magnet and spin dependent nanoscale magnetic devices. This portable NMR system is intended to analyze samples as small as a few nanoliters.^ The main problem to resolve when downscaling the variables is to obtain an NMR signal with high Signal-To-Noise-Ratio (SNR). A special Tunneling Magneto-Resistive (TMR) sensor design was developed to achieve this goal. The minimum specifications for each component of the proposed NMR system were established. A complete NMR system was designed based on these minimum requirements. The goat was always to find cost effective realistic components. The novel design of the NMR system uses technologies such as Direct Digital Synthesis (DDS), Digital Signal Processing (DSP) and a special Backpropagation Neural Network that finds the best match of the NMR spectrum. The system was designed, calculated and simulated with excellent results.^ In addition, a general method to design TMR Sensors was developed. The technique was automated and a computer program was written to help the designer perform this task interactively.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. ^ A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. ^ The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. ^ The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. ^ To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to high-speed rotation, the problems about rotor mechanics and dynamics for outer rotor high-speed machine are more serious than conventional ones, in view of above problems the mechanical and dynamics analysis for an outer rotor high-speed permanent magnet claw pole motor are carried out. The rotor stress analytical calculation model was derived, then the stress distribution is calculated by finite element method also, which is coincided with that calculated by analytical model. In addition, the stress distribution of outer rotor yoke and PMs considering centrifugal force and temperature effect has been calculated, some influence factors on rotor stress distribution have been analyzed such as pole-arc coefficient and speed. The rotor natural frequency and critical speed were calculated by vibration mode analysis, and its dynamics characteristics influenced by gyroscope effect were analyzed based on Campbell diagram. Based on the analysis results above an outer rotor permanent magnet high-speed claw pole motor is design and verified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transportbandsyteme werden im Bereich der Intralogistik zur Förderung von Stück- sowie leichten Schüttgütern eingesetzt. Der Antrieb der Transportbänder erfolgt dabei üblicherweise kraftschlüssig über die Antriebstrommel. Der Einsatz von Lineardirektantrieben ermöglicht als Antriebsalternative die Erzeugung der Vorschubkräfte und die Krafteinleitung in das Transportband über der Länge des Lineardirektantriebs verteilt. Dadurch lässt sich die Transportbandvorspannung erheblich reduzieren und damit auch ein leichteres und kostengünstigeres Transportband im Vergleich zu konventionellen Antriebskonzepten verwenden. Basierend auf vorherigen Untersuchungen wurde ein Lineardirektantrieb auf Basis eines Hybridmotors entwickelt, welcher die Vorteile permanentmagneterregter Maschinen mit denen der Reluktanzmotorprinzipien vereint. Auf Grundlage der durch Simulation ermittelten Kraftentfaltkungscharakteristik des Linearmotors auf die Läuferelemente wurden verschiedene Konzepte zur Befestigung dieser Läuferelemente entwickelt, untersucht und erprobt. Aufgrund der Elastizität von Transportbändern sind zudem alternative Führungskonzepte erforderlich, da geometrische Abweichungen der am Transportband befestigten Läuferelemente zu hohen Verlusten durch Reibung führen. Unterschiedliche Führungskonzepte, belegt durch Messungen, geben einen Ausblick auf den linearmotorischen Antrieb.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade Gama, Programa de Pós-Graduação em Engenharia Biomédica, 2015.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study barium hexaferrite was (general formulae BaFe12O19) was synthesized by the Pechini method under different conditions of heat treatment. Precursors like barium carbonate and iron nitrate were used. These magnetic ceramic, with magnetoplumbite type structure, are widely used as permanent magnet because of its excellent magnetic properties, such as: high Curie temperature, good magnetic anisotropy, high coercivity and corrosion resistance. The samples were characterized by thermal analysis (DTA and TG), X- ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) end Vibrating sample Magnetometer (VSM). The results confirm the expected phase, which was reinforced according to our analysis. A single phase powder at relatively high temperatures with particle sizes around 100 nm was obtained. The characteristic magnetic behavior one of the phases has been noted (probably superparamagnetic material), while another phase was identified as a ferrimagnetic material. The ferrimagnetic phase showed vortex configuration with two central and slightly inclined plateaus. In general, increase of heat treatment temperature and time, directly influenced the technological properties of the samples

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports on a low frequency piezoelectric energy harvester that scavenges energy from a wire carrying an AC current. The harvester is described, fabricated and characterized. The device consists of a silicon cantilever with integrated piezoelectric capacitor and proof-mass that incorporates a permanent magnet. When brought close to an AC current carrying wire, the magnet couples to the AC magnetic field from a wire, causing the cantilever to vibrate and generate power. The measured average power dissipated across an optimal resistive load was 1.5 μW. This was obtained by exciting the device into mechanical resonance using the electro-magnetic field from the 2 A source current. The measurements also reveal that the device has a nonlinear response that is due to a spring hardening mechanism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Through modelling activity, experimental campaigns, test bench and on-field validation, a complete powertrain for a BEV has been designed, assembled and used in a motorsport competition. The activity can be split in three main subjects, representing the three key components of an BEV vehicle. First of all a model of the entire powertrain has been developed in order to understand how the various design choices will influence the race lap-time. The data obtained was then used to design, build and test a first battery pack. After bench tests and track tests, it was understood that by using all the cell charac-teristics, without breaking the rules limitations, higher energy and power densities could have been achieved. An updated battery pack was then designed, produced and raced with at Motostudent 2018 re-sulting in a third place at debut. The second topic of this PhD was the design of novel inverter topologies. Three inverters have been de-signed, two of them using Gallium Nitride devices, a promising semiconductor technology that can achieve high switching speeds while maintaining low switching losses. High switching frequency is crucial to reduce the DC-Bus capacitor and then increase the power density of 3 phase inverters. The third in-verter uses classic Silicon devices but employs a ZVS (Zero Voltage Switching) topology. Despite the in-creased complexity of both the hardware and the control software, it can offer reduced switching losses by using conventional and established silicon mosfet technology. Finally, the mechanical parts of a three phase permanent magnet motor have been designed with the aim to employ it in UniBo Motorsport’s 2020 Formula Student car.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multi-phase electrical drives are potential candidates for the employment in innovative electric vehicle powertrains, in response to the request for high efficiency and reliability of this type of application. In addition to the multi-phase technology, in the last decades also, multilevel technology has been developed. These two technologies are somewhat complementary since both allow increasing the power rating of the system without increasing the current and voltage ratings of the single power switches of the inverter. In this thesis, some different topics concerning the inverter, the motor and the fault diagnosis of an electric vehicle powertrain are addressed. In particular, the attention is focused on multi-phase and multilevel technologies and their potential advantages with respect to traditional technologies. First of all, the mathematical models of two multi-phase machines, a five-phase induction machine and an asymmetrical six-phase permanent magnet synchronous machines are developed using the Vector Space Decomposition approach. Then, a new modulation technique for multi-phase multilevel T-type inverters, which solves the voltage balancing problem of the DC-link capacitors, ensuring flexible management of the capacitor voltages, is developed. The technique is based on the proper selection of the zero-sequence component of the modulating signals. Subsequently, a diagnostic technique for detecting the state of health of the rotor magnets in a six-phase permanent magnet synchronous machine is established. The technique is based on analysing the electromotive force induced in the stator windings by the rotor magnets. Furthermore, an innovative algorithm able to extend the linear modulation region for five-phase inverters, taking advantage of the multiple degrees of freedom available in multi-phase systems is presented. Finally, the mathematical model of an eighteen-phase squirrel cage induction motor is defined. This activity aims to develop a motor drive able to change the number of poles of the machine during the machine operation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La costante ricerca e lo sviluppo nel campo degli azionamenti e dei motori elettrici hanno portato ad una loro sempre maggiore applicazione ed utilizzo. Tuttavia, la crescente esigenza di sistemi ad alta potenza sempre più performanti da una parte ha evidenziato i limiti di certe soluzioni, dall’altra l’affermarsi di altre. In questi sistemi, infatti, la macchina elettrica trifase non rappresenta più l’unica soluzione possibile: negli ultimi anni si è assistito ad una sempre maggiore diffusione di macchine elettriche multifase. Grazie alle maggiori potenzialità che sono in grado di offrire, per quanto alcune di queste siano ancora sconosciute, risultano già essere una valida alternativa rispetto alla tradizionale controparte trifase. Sicuramente però, fra le varie architetture multifase, quelle multi-trifase (ovvero quelle con un numero di fasi multiplo di tre) rappresentano una soluzione particolarmente vantaggiosa in ambito industriale. Infatti, se impiegate all’interno di architetture multifase, la profonda conoscenza dei tradizionali sistemi trifase consente di ridurre i costi ed i tempi legati alla loro progettazione. In questo elaborato la macchina elettrica multi-trifase analizzata è una macchina sincrona esafase con rotore a magneti permanenti superficiali. Questa particolare tipologia di macchina elettrica può essere modellizzata attraverso due approcci completamente differenti: uno esafase ed uno doppio trifase. Queste possibilità hanno portato molti ricercatori alla ricerca della migliore strategia di controllo per questa macchina. L’obiettivo di questa tesi è di effettuare un’analisi comparativa tra tre diverse strategie di controllo applicate alla stessa macchina elettrica multi-trifase, analizzandone la risposta dinamica in diverse condizioni di funzionamento.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lo scopo di questa tesi è quello di mostrare le potenzialità e le possibili soluzioni dell’Additive Manufacturing per l’ottimizzazione di macchine elettriche in risposta al problema delle terre rare. Nel primo capitolo viene presentato lo stato dell’arte dell’Additive Manufacturing mostrando una rapida panoramica delle sue caratteristiche principali, le potenzialità future e i settori di utilizzo. Il secondo capitolo propone le principali tecniche di Stampa 3D per la realizzazione di oggetti evidenziando di ognuna i pregi e i difetti. All’interno del terzo capitolo, viene illustrata la struttura di una macchina elettrica mostrando le varie componenti e presentando delle possibili ottimizzazioni realizzate tramite Additive Manufacturing. Nel quarto capitolo vengono presentati esempi di macchine elettriche complete realizzate attraverso le tecniche dell’Additive Manufacturing. Nel quinto capitolo vengono confrontati un Interior Permanent Magnets motor e un Synchronous Relectance Machine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the field of industrial automation, there is an increasing need to use optimal control systems that have low tracking errors and low power and energy consumption. The motors we are dealing with are mainly Permanent Magnet Synchronous Motors (PMSMs), controlled by 3 different types of controllers: a position controller, a speed controller, and a current controller. In this thesis, therefore, we are going to act on the gains of the first two controllers by going to find, through the TwinCAT 3 software, what might be the best set of parameters. To do this, starting with the default parameters recommended by TwinCAT, two main methods were used and then compared: the method of Ziegler and Nichols, which is a tabular method, and advanced tuning, an auto-tuning software method of TwinCAT. Therefore, in order to analyse which set of parameters was the best,several experiments were performed for each case, using the Motion Control Function Blocks. Moreover, some machines, such as large robotic arms, have vibration problems. To analyse them in detail, it was necessary to use the Bode Plot tool, which, through Bode plots, highlights in which frequencies there are resonance and anti-resonance peaks. This tool also makes it easier to figure out which and where to apply filters to improve control.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work aims to present the design and the evaluation of a standard multi-pole machine with permanent magnets inserted in the rotor by two different geometrical forms: aligned and skewed magnets. The design (new analytical method) was based on a standard 250 W three phase 12-pole induction motor (squirrel cage rotor type), beginning with the original stator constructive data to calculate the magnetic flux density to determine the permanent magnets. In the development of the work, a simple and modular rotor was built reusing the original 12-pole stator (concentrated windings). The machine was evaluated in a laboratory for the purpose of checking the quantity and quality of energy produced with the machine operating as a generator and its start, torque, and performance working as a motor. In conclusion, the modular skewed magnet is an option for electrical machines, for the generation of a reasonable quality, in the context of decentralized generation and a motor with high torque and low energetic consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power converters play a vital role in the integration of wind power into the electrical grid. Variable-speed wind turbine generator systems have a considerable interest of application for grid connection at constant frequency. In this paper, comprehensive simulation studies are carried out with three power converter topologies: matrix, two-level and multilevel. A fractional-order control strategy is studied for the variable-speed operation of wind turbine generator systems. The studies are in order to compare power converter topologies and control strategies. The studies reveal that the multilevel converter and the proposed fractional-order control strategy enable an improvement in the power quality, in comparison with the other power converters using a classical integer-order control strategy. (C) 2010 Elsevier Ltd. All rights reserved.